Consistency, characters, and the likelihood of correct phylogenetic inference.

Computer simulations of character-state evolution in 8, 16, 32, and 64 ingroup taxa with a known set of relationships demonstrate that the maximum probability of correct phylogenetic inference increases with the number of variable (or informative) characters and their consistency index and decreases with the number of taxa, when the consistency index has been standardized to eliminate its dependence on the number of taxa. Equations for the probability of correct phylogenetic inference and for the standardized consistency indices (including or excluding autapomorphies) are derived. Given that actual studies based on DNA restriction sites and sequences generate more characters with a higher level of consistency than comparable studies based on morphology, calculations suggest that such molecular studies may often provide a more precise guide to phylogenetic relationships.

[1]  J. Palmer,et al.  Chloroplast DNA Variation and Plant Phylogeny , 1988 .

[2]  M. Donoghue 12 – COMPLEXITY AND HOMOLOGY IN PLANTS , 1994 .

[3]  R. Vane-Wright,et al.  Phylogenetics and ecology , 1994 .

[4]  W. Brown,et al.  A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: sequence, structure, evolution, and phylogenetic implications. , 1986, Molecular biology and evolution.

[5]  J. Huelsenbeck Tree-Length Distribution Skewness: An Indicator of Phylogenetic Information , 1991 .

[6]  A. Queiroz,et al.  THE USEFULNESS OF BEHAVIOR FOR PHYLOGENY ESTIMATION: LEVELS OF HOMOPLASY IN BEHAVIORAL AND MORPHOLOGICAL CHARACTERS , 1993, Evolution; international journal of organic evolution.

[7]  James S. Farris,et al.  The retention index and homoplasy excess , 1989 .

[8]  W. Wheeler,et al.  Paired sequence difference in ribosomal RNAs: evolutionary and phylogenetic implications. , 1988, Molecular biology and evolution.

[9]  L. Gottlieb Towards molecular genetics in Clarkia: gene duplications and molecular characterization of PGI genes , 1988 .

[10]  M. Donoghue,et al.  Integration of morphological and ribosomal RNA data on the origin of angiosperms , 1994 .

[11]  J. Avise,et al.  Recognizing the forest for the trees: testing temporal patterns of cladogenesis using a null model of stochastic diversification. , 1996, Molecular biology and evolution.

[12]  David M. Williams,et al.  Congruence Between Molecular and Morphological Phylogenies , 1993 .

[13]  J. Bull,et al.  Partitioning and combining data in phylogenetic analysis , 1993 .

[14]  R. Meier,et al.  Homoplasy Slope Ratio: A Better Measurement of Observed Homoplasy in Cladistic Analyses , 1991 .

[15]  M. Nei,et al.  Relative efficiencies of the maximum parsimony and distance-matrix methods in obtaining the correct phylogenetic tree. , 1988, Molecular biology and evolution.

[16]  M. Donoghue,et al.  The Suitability of Molecular and Morphological Evidence in Reconstructing Plant Phylogeny , 1992 .

[17]  A. Larson,et al.  A Molecular Phylogenetic Perspective on the Evolutionary Radiation of the Salamander Family Salamandridae , 1995 .

[18]  W. J. Langford Statistical Methods , 1959, Nature.

[19]  J. Farris,et al.  Quantitative Phyletics and the Evolution of Anurans , 1969 .

[20]  C. Patterson Homology in classical and molecular biology. , 1988, Molecular biology and evolution.

[21]  Michael M. Miyamoto,et al.  TESTING SPECIES PHYLOGENIES AND PHYLOGENETIC METHODS WITH CONGRUENCE , 1995 .

[22]  M. Donoghue,et al.  Phylogenetic relationships of Dipsacales based on rbcl sequences , 1992 .

[23]  Douglas E. Soltis,et al.  Molecular Systematics of Plants , 1992, Springer US.

[24]  A. Larson The comparison of morphological and molecular data in phylogenetic systematics. , 1994, EXS.

[25]  Michael J. Donoghue,et al.  Progress and Prospects in Reconstructing Plant Phylogeny , 1994 .

[26]  James F. Smith,et al.  The use of chloroplast DNA to assess biogeography and evolution of morphology, breeding systems, and flavonoids in Fuchsia sect. Skinnera (Onagraceae), , 1991 .

[27]  C. Humphries,et al.  The use of nucleic acid sequence data in phylogenetic reconstruction , 1988 .

[28]  John P. Huelsenbeck,et al.  A Likelihood Ratio Test to Detect Conflicting Phylogenetic Signal , 1996 .

[29]  Richard G. Olmstead,et al.  Combining Data in Phylogenetic Systematics: An Empirical Approach Using Three Molecular Data Sets in the Solanaceae , 1994 .

[30]  J. Huelsenbeck,et al.  SUCCESS OF PHYLOGENETIC METHODS IN THE FOUR-TAXON CASE , 1993 .

[31]  R. Appels,et al.  rDNA: Evolution Over a Billion Years , 2019, DNA Systematics.

[32]  James W. Archie,et al.  A randomization test for phylogenetic information in systematic data , 1989 .

[33]  D. Wake Homoplasy: The Result of Natural Selection, or Evidence of Design Limitations? , 1991, The American Naturalist.

[34]  M. Donoghue,et al.  PATTERNS OF VARIATION IN LEVELS OF HOMOPLASY , 1989, Evolution; international journal of organic evolution.

[35]  J. Farris THE RETENTION INDEX AND THE RESCALED CONSISTENCY INDEX , 1989, Cladistics : the international journal of the Willi Hennig Society.

[36]  James W. Archie,et al.  Homoplasy Excess Ratios: New Indices for Measuring Levels of Homoplasy in Phylogenetic Systematics and a Critique of the Consistency Index , 1989 .

[37]  K. Sytsma DNA and morphology: Inference of plant phylogeny , 1990 .

[38]  Brian K. Hall,et al.  Homology: The hierarchical basis of comparative biology , 1994 .

[39]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[40]  K. Sytsma,et al.  Chloroplast DNA evidence for the origin of the genus Heterogaura from a species of Clarkia (Onagraceae). , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[41]  B. Mishler Cladistic analysis of molecular and morphological data. , 1994, American journal of physical anthropology.

[42]  M. Chase,et al.  Chloroplast and nuclear gene sequences indicate late Pennsylvanian time for the last common ancestor of extant seed plants. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D. Ord,et al.  PAUP:Phylogenetic analysis using parsi-mony , 1993 .

[44]  D. Hillis,et al.  Ribosomal RNA secondary structure: compensatory mutations and implications for phylogenetic analysis. , 1993, Molecular biology and evolution.

[45]  D. Hillis Approaches for Assessing Phylogenetic Accuracy , 1995 .

[46]  J. Huelsenbeck,et al.  Application and accuracy of molecular phylogenies. , 1994, Science.

[47]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[48]  K. Holsinger,et al.  PHYLOGENETIC RELATIONSHIPS IN GREEN PLANTS—A COMMENT ON THE USE OF 5S RIBOSOMAL RNA SEQUENCES BY BREMER ET AL. , 1988 .