First Principles Calculations Toward Understanding SERS of 2,2′‐Bipyridyl Adsorbed on Au, Ag, and Au–Ag Nanoalloy

First principles electrodyanmics and quantum chemical simulations are performed to gain insights into the underlying mechanisms of the surface enhanced Raman spectra of 22BPY adsorbed on pure Au and Ag as well as on Au–Ag alloy nanodiscs. Experimental SERS spectra from Au and Ag nanodiscs show similar peaks, whereas those from Au–Ag alloy reveal new spectral features. The physical enhancement factors due to surface nano‐texture were considered by numerical FDTD simulations of light intensity distribution for the nano‐textured Au, Ag, and Au–Ag alloy and compared with experimental results. For the chemical insights of the enhancement, the DFT calculations with the dispersion interaction were performed using Au20, Ag20, and Au10Ag10 clusters of a pyramidal structure for SERS modeling. Binding of 22BPY to the clusters was simulated by considering possible arrangements of vertex and planar physical as well as chemical adsorption models. The DFT results indicate that 22BPY prefers a coplanar adsorption on a (111) face with trans‐conformation having close energy difference to cis‐conformation. Binding to pure Au cluster is stronger than to pure Ag or Au–Ag alloy clusters and adsorption onto the alloy surface can deform the surface. The computed Raman spectra are compared with experimental data and assignments for pure Au and Ag models are well matching, indicating the need of dispersion interaction to reproduce strong Raman signal at around 800 cm–1. This work provides insight into 3D character of SERS on nanorough surfaces due to different binding energies and bond length of nanoalloys. © 2018 Wiley Periodicals, Inc.

[1]  Sarah M. Stranahan,et al.  Super-resolution optical imaging of single-molecule SERS hot spots. , 2010, Nano letters.

[2]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[3]  Yoshiaki Nishijima,et al.  Unusual optical properties of the Au/Ag alloy at the matching mole fraction , 2012 .

[4]  M. Natan,et al.  Surface-enhanced Raman spectroscopy and homeland security: a perfect match? , 2009, ACS nano.

[5]  George C Schatz,et al.  TDDFT studies of absorption and SERS spectra of pyridine interacting with Au20. , 2006, The journal of physical chemistry. A.

[6]  Saulius Juodkazis,et al.  Tunable Raman Selectivity via Randomization of a Rectangular Pattern of Nanodisks , 2014 .

[7]  Dmitrij Rappoport,et al.  Lagrangian approach to molecular vibrational Raman intensities using time-dependent hybrid density functional theory. , 2007, The Journal of chemical physics.

[8]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[9]  Alfredo Caro,et al.  Optical properties of Au-Ag alloys: An ellipsometric study , 2014 .

[10]  T. Wandlowski,et al.  Structural transitions in 2,2′-bipyridine adlayers on Au(111)—an in-situ STM study , 1998 .

[11]  Hideki Nabika,et al.  Polarization characteristics of surface-enhanced Raman scattering from a small number of molecules at the gap of a metal nano-dimer. , 2011, Chemical communications.

[12]  K. Kneipp,et al.  SERS--a single-molecule and nanoscale tool for bioanalytics. , 2008, Chemical Society reviews.

[13]  Filipp Furche,et al.  Adiabatic time-dependent density functional methods for excited state properties , 2002 .

[14]  Rolf Schäfer,et al.  Dopant-induced 2D-3D transition in small Au-containing clusters: DFT-global optimisation of 8-atom Au-Ag nanoalloys. , 2012, Nanoscale.

[15]  A. Katz,et al.  Bipyridine: the most widely used ligand. A review of molecules comprising at least two 2,2'-bipyridine units. , 2000, Chemical reviews.

[16]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[17]  Saulius Juodkazis,et al.  Long-range interaction of localized surface plasmons in periodic and random patterns of Au nanoparticles , 2014 .

[18]  Jijun Zhao,et al.  Atomic structures and electronic properties of small Au–Ag binary clusters: Effects of size and composition , 2012 .

[19]  Maurizio Muniz-Miranda,et al.  Normal mode analysis of 2,2′-bipyridine—II. Crystal vibrations , 1983 .

[20]  Saulius Juodkazis,et al.  Alloy materials for plasmonic refractive index sensing , 2017 .

[21]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[22]  Chen Gong,et al.  Noble Metal Alloys for Plasmonics , 2016 .

[23]  Chen Gong,et al.  Lithography‐Free, Omnidirectional, CMOS‐Compatible AlCu Alloys for Thin‐Film Superabsorbers , 2018 .

[24]  Salvatore Cannistraro,et al.  SERS-based nanobiosensing for ultrasensitive detection of the p53 tumor suppressor , 2011, International journal of nanomedicine.

[25]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[26]  Soon Hock Ng,et al.  Asymmetric gold nanodimer arrays: electrostatic self-assembly and SERS activity , 2015 .

[27]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[28]  Xing Yi Ling,et al.  Encoding molecular information in plasmonic nanostructures for anti-counterfeiting applications. , 2014, Nanoscale.

[29]  Alexandre G. Brolo,et al.  The orientation of 2,2'-bipyridine adsorbed at a SERS-active Au(111) electrode surface , 2003 .

[30]  Saulius Juodkazis,et al.  Randomization of gold nano-brick arrays: a tool for SERS enhancement. , 2013, Optics express.

[31]  Javier Aizpurua,et al.  Linking classical and molecular optomechanics descriptions of SERS. , 2017, Faraday discussions.

[32]  P G Etchegoin,et al.  A perspective on single molecule SERS: current status and future challenges. , 2008, Physical chemistry chemical physics : PCCP.

[33]  S. Nie,et al.  Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. , 2008, Chemical Society reviews.

[34]  Jürgen Popp,et al.  Fundamental SERS Investigation of Pyridine and Its Derivates as a Function of Functional Groups, Their Substitution Position, and Their Interaction with Silver Nanoparticles , 2017 .

[35]  Knut Ripken,et al.  Die optischen Konstanten von Au, Ag und ihren Legierungen im Energiebereich 2,4 bis 4,4 eV , 1972 .

[36]  Saulius Juodkazis,et al.  Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting. , 2012, Optics express.

[37]  Ramasamy Manoharan,et al.  Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS) , 1998 .

[38]  Saulius Juodkazis,et al.  Scaling Rules of SERS Intensity , 2014 .

[39]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[40]  George Chumanov,et al.  Surface Enhanced Raman Scattering from Silver Nanoparticle Arrays on Silver Mirror Films: Plasmon-Induced Electronic Coupling as the Enhancement Mechanism , 2007 .

[41]  Lasse Jensen,et al.  Theoretical studies of plasmonics using electronic structure methods. , 2011, Chemical reviews.

[42]  V. A. Apkarian,et al.  Observation of Single Molecule Plasmon-Driven Electron Transfer in Isotopically Edited 4,4'-Bipyridine Gold Nanosphere Oligomers. , 2017, Journal of the American Chemical Society.

[43]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[44]  P. Jena,et al.  Beyond the Periodic Table of Elements: The Role of Superatoms. , 2013, The journal of physical chemistry letters.

[45]  Saulius Juodkazis,et al.  Optical readout of hydrogen storage in films of Au and Pd. , 2017, Optics express.

[46]  R. Birke,et al.  Charge‐transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions , 1986 .

[47]  U. Bach,et al.  Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles. , 2013, ACS nano.

[48]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. , 2004, Angewandte Chemie.

[49]  Saulius Juodkazis,et al.  Additional Enhancement of Electric Field in Surface-Enhanced Raman Scattering due to Fresnel Mechanism , 2013, Scientific Reports.

[50]  Aidong Peng,et al.  Probing the Conformational Transition of 2,2′-Bipyridyl under External Field by Surface-Enhanced Raman Spectroscopy , 2012 .