Spatial transcriptomics: Technologies, applications and experimental considerations

[1]  J. Rao,et al.  Artificial intelligence-driven morphology-based enrichment of malignant cells from body fluid , 2023, bioRxiv.

[2]  S. Bullman,et al.  Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer , 2022, Nature.

[3]  John O. Prior,et al.  The neurons that restore walking after paralysis , 2022, Nature.

[4]  Carolyn A. Morrison,et al.  High resolution mapping of the breast cancer tumor microenvironment using integrated single cell, spatial and in situ analysis of FFPE tissue , 2022, bioRxiv.

[5]  Bian Hu,et al.  A review of spatial profiling technologies for characterizing the tumor microenvironment in immuno-oncology , 2022, Frontiers in Immunology.

[6]  Zachary R. Lewis,et al.  High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. , 2022, Nature biotechnology.

[7]  Y. Saeys,et al.  A cellular hierarchy in melanoma uncouples growth and metastasis , 2022, Nature.

[8]  Y. Chung,et al.  Spatiotemporal dynamics of macrophage heterogeneity and a potential function of Trem2hi macrophages in infarcted hearts , 2022, Nature Communications.

[9]  E. Lundberg,et al.  The emerging landscape of spatial profiling technologies , 2022, Nature Reviews Genetics.

[10]  Liangliang Xu,et al.  Reshaping the systemic tumor immune environment (STIE) and tumor immune microenvironment (TIME) to enhance immunotherapy efficacy in solid tumors , 2022, Journal of Hematology & Oncology.

[11]  Brian R. Long,et al.  Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH , 2022, Science.

[12]  L. Luo,et al.  A preoptic neuronal population controls fever and appetite during sickness , 2022, Nature.

[13]  J. Blay,et al.  Pembrolizumab in soft-tissue sarcomas with tertiary lymphoid structures: a phase 2 PEMBROSARC trial cohort , 2022, Nature Medicine.

[14]  Yuxiang Li,et al.  High-resolution 3D spatiotemporal transcriptomic maps of developing Drosophila embryos and larvae. , 2022, Developmental cell.

[15]  Cristina Zibetti Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Advancements, Challenges and Perspectives , 2022, Cells.

[16]  Amanda M. Saravia-Butler,et al.  System-wide transcriptome damage and tissue identity loss in COVID-19 patients , 2022, Cell Reports Medicine.

[17]  Andreas R. Pfenning,et al.  Neurons burdened by DNA double-strand breaks incite microglia activation through antiviral-like signaling in neurodegeneration , 2021, bioRxiv.

[18]  S. Teichmann,et al.  A spatial multi-omics atlas of the human lung reveals a novel immune cell survival niche , 2021, bioRxiv.

[19]  G. Nolan,et al.  Annotation of Spatially Resolved Single-cell Data with STELLAR , 2021, bioRxiv.

[20]  Xinmin Li,et al.  From bulk, single-cell to spatial RNA sequencing , 2021, International journal of oral science.

[21]  Huanming Yang,et al.  Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays , 2021, Cell.

[22]  Yuxiang Li,et al.  Spatiotemporal mapping of gene expression landscapes and developmental trajectories during zebrafish embryogenesis , 2021, bioRxiv.

[23]  Y. Saeys,et al.  Spatial proteogenomics reveals distinct and evolutionarily-conserved hepatic macrophage niches , 2021, bioRxiv.

[24]  K. Zatloukal,et al.  Highly resolved spatial transcriptomics for detection of rare events in cells , 2021, bioRxiv.

[25]  Hongkui Zeng,et al.  Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH , 2021, Nature.

[26]  Ash A. Alizadeh,et al.  Atlas of clinically distinct cell states and ecosystems across human solid tumors , 2021, Cell.

[27]  J. Todd,et al.  Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus , 2021, Nature Genetics.

[28]  Rachel S. G. Sealfon,et al.  A reference tissue atlas for the human kidney , 2021, bioRxiv.

[29]  H. Shah,et al.  Molecular Profiling of Coronavirus Disease 2019 (COVID-19) Autopsies Uncovers Novel Disease Mechanisms , 2021, The American Journal of Pathology.

[30]  Baocun Sun,et al.  Spatial maps of hepatocellular carcinoma transcriptomes highlight an unexplored landscape of heterogeneity and a novel gene signature for survival , 2021, Cancer cell international.

[31]  Ruibin Xi,et al.  Spatiotemporal Immune Landscape of Colorectal Cancer Liver Metastasis at Single-Cell Level. , 2021, Cancer discovery.

[32]  D. Theodorescu,et al.  An N-Cadherin 2 expressing epithelial cell subpopulation predicts response to surgery, chemotherapy and immunotherapy in bladder cancer , 2021, Nature Communications.

[33]  Gustavo S. França,et al.  Exploring tissue architecture using spatial transcriptomics , 2021, Nature.

[34]  George D. Cresswell,et al.  Phenotypic plasticity and genetic control in colorectal cancer evolution , 2021, bioRxiv.

[35]  S. Weissman,et al.  Spatial transcriptome profiling by MERFISH reveals fetal liver hematopoietic stem cell niche architecture , 2021, Cell Discovery.

[36]  M. Herbert,et al.  Single-cell roadmap of human gonadal development , 2021, Nature.

[37]  E. Yaksi,et al.  Diversity and function of motile ciliated cell types within ependymal lineages of the zebrafish brain , 2021, bioRxiv.

[38]  Huanming Yang,et al.  Large field of view-spatially resolved transcriptomics at nanoscale resolution , 2021 .

[39]  Michael T. Eadon,et al.  The orchestrated cellular and molecular responses of the kidney to endotoxin define a precise sepsis timeline , 2021, eLife.

[40]  Howard Y. Chang,et al.  Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set , 2020, Science.

[41]  Junedh M. Amrute,et al.  Spatial multi-omic map of human myocardial infarction , 2020, Nature.

[42]  Bryan D. Bryson,et al.  Single Cell and Spatial Transcriptomics Defines the Cellular Architecture of the Antimicrobial Response Network in Human Leprosy Granulomas , 2020, bioRxiv.

[43]  David F. Boyd,et al.  Exuberant fibroblast activity compromises lung function via ADAMTS4 , 2020, Nature.

[44]  T. Ohta,et al.  Genomic profiling reveals heterogeneous populations of ductal carcinoma in situ of the breast , 2020, medRxiv.

[45]  Edward S Boyden,et al.  Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems , 2020, Science.

[46]  G. Mills,et al.  Multiplex digital spatial profiling of proteins and RNA in fixed tissue , 2020, Nature Biotechnology.

[47]  R. Herbst,et al.  Biomarkers Associated with Beneficial PD-1 Checkpoint Blockade in Non–Small Cell Lung Cancer (NSCLC) Identified Using High-Plex Digital Spatial Profiling , 2020, Clinical Cancer Research.

[48]  J. Kleinman,et al.  Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex , 2020, Nature Neuroscience.

[49]  J. Wargo,et al.  B cells are associated with survival and immunotherapy response in sarcoma , 2020, Nature.

[50]  Joakim Lundeberg,et al.  Molecular atlas of the adult mouse brain , 2019, Science Advances.

[51]  Daniel J. Miller,et al.  Spatiotemporal transcriptomic divergence across human and macaque brain development , 2018, Science.

[52]  Nimrod D. Rubinstein,et al.  Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region , 2018, Science.

[53]  Catherine E. Braine,et al.  Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis , 2018, Science.

[54]  Patrik L. Ståhl,et al.  Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity , 2018, Nature Communications.

[55]  Patrik L. Ståhl,et al.  Visualization and analysis of gene expression in tissue sections by spatial transcriptomics , 2016, Science.

[56]  X. Zhuang,et al.  Spatially resolved, highly multiplexed RNA profiling in single cells , 2015, Science.

[57]  U. Landegren,et al.  Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21 , 1997, Nature Genetics.

[58]  OUP accepted manuscript , 2022, Cardiovascular Research.