Self-intersections for the surface diffusion and the volume-preserving mean curvature flow
暂无分享,去创建一个
[1] G. Huisken. The volume preserving mean curvature flow. , 1987 .
[2] L. Bronsard,et al. Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation , 1997 .
[3] J. Escher,et al. The surface diffusion flow for immersed hypersurfaces , 1998 .
[4] J. Taylor,et al. Overview no. 113 surface motion by surface diffusion , 1994 .
[5] Giuseppe Da Prato,et al. Equations d'évolution abstraites non linéaires de type parabolique , 1979 .
[6] U. Mayer. Numerical solutions for the surface diusion ow in three space dimensions , 2001 .
[7] W. Mullins. Theory of Thermal Grooving , 1957 .
[8] J. Duchon,et al. Evolution D'une Interface par diffusion de surface , 1984 .
[9] M. Gage. On an area-preserving evolution equation for plane curves , 1986 .
[10] J. Escher,et al. ON THE SURFACE DIFFUSION FLOW , 2000 .
[11] Andrea L. Bertozzi,et al. Axisymmetric Surface Diffusion: Dynamics and Stability of Self-Similar Pinchoff , 1998 .
[12] Herbert Amann,et al. Linear and Quasilinear Parabolic Problems , 2019, Monographs in Mathematics.
[13] Charles M. Elliott,et al. The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature , 1996, European Journal of Applied Mathematics.
[14] Morton E. Gurtin,et al. On the motion of a phase interface by surface diffusion , 1990 .
[15] Yoshikazu Giga,et al. On pinching of curves moved by surface diffusion , 1997 .
[16] Richard S. Falk,et al. Space-Time Finite Element Methods for Surface Diffusion with Applications to the Theory of the Stability of Cylinders , 1996, SIAM J. Sci. Comput..
[17] J. Escher,et al. The volume preserving mean curvature flow near spheres , 1998 .
[18] Sigurd B. Angenent,et al. Nonlinear analytic semiflows , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.