High Resolution Brillouin Sensing of Micro-Scale Structures

Brillouin distributed measurement techniques have been extensively developed for structural health monitoring using fibre optic nerve systems. The recent advancement in the spatial resolution capabilities of correlation-based Brillouin distributed technique have reached the sub-mm regime, making this approach a suitable candidate for monitoring and characterizing integrated photonic devices. The small dimension associated with the short length of these devices—on the order of the cmand mm-scale—requires high sensitivity detection techniques and sub-mm spatial resolution. In this paper, we provide an overview of the different Brillouin sensing techniques in various micro-scale structures such as photonic crystal fibres, microfibres, and on-chip waveguides. We show how Brillouin sensing is capable of detecting fine transverse geometrical features with the sensitivity of a few nm and also extremely small longitudinal features on the order of a few hundreds of μm. We focus on the technique of Brillouin optical correlation domain analysis (BOCDA), which enables such high spatial resolution for mapping the opto-acoustic responses of micro-scale waveguides.

[1]  Peter T. Rakich,et al.  Non-reciprocal interband Brillouin modulation , 2018, Nature Photonics.

[2]  Luc Thévenaz,et al.  Local activation of surface and hybrid acoustic waves in optical microwires. , 2018, Optics letters.

[3]  R. Pant,et al.  Acoustic confinement and stimulated Brillouin scattering in integrated optical waveguides , 2013, 1308.0382.

[4]  Thibaut Sylvestre,et al.  Guided acoustic wave Brillouin scattering in photonic crystal fibers. , 2007, Optics letters.

[5]  H Maillotte,et al.  Photonic crystal fiber mapping using Brillouin echoes distributed sensing. , 2010, Optics express.

[6]  V Laude,et al.  Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber. , 2007, Optics express.

[7]  A. V. Nazarkin,et al.  Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators , 2009 .

[8]  Moritz Merklein,et al.  Highly localized distributed Brillouin scattering response in a photonic integrated circuit , 2018 .

[9]  Anthony W. Brown,et al.  Dark-Pulse Brillouin Optical Time-Domain Sensor With 20-mm Spatial Resolution , 2007, Journal of Lightwave Technology.

[10]  Yosef London,et al.  Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission. , 2014, Optics express.

[11]  K. Abe,et al.  Suppression of Signal Fluctuation in Brillouin Optical Correlation Domain Analysis System Using Polarization Diversity Scheme , 2006, IEEE Photonics Technology Letters.

[12]  Kazuo Hotate,et al.  Measurement of Brillouin gain spectrum distribution along an optical fiber by direct frequency modulation of a laser diode , 1999, Optics East.

[13]  A. Bjarklev,et al.  Gas sensing using air-guiding photonic bandgap fibers , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[14]  Masato Kishi,et al.  Measurement of Brillouin frequency shift distribution in PLC by Brillouin optical correlation domain analysis , 2012, Other Conferences.

[15]  C. Poulton,et al.  Stimulated Brillouin Scattering in integrated photonic waveguides: forces, scattering mechanisms and coupled mode analysis , 2014, 1407.3521.

[16]  Peter T. Rakich,et al.  Large Brillouin amplification in silicon , 2015, Nature Photonics.

[17]  M. Tur,et al.  [INVITED] State of the art of Brillouin fiber-optic distributed sensing , 2016 .

[18]  R. Bernini,et al.  Distributed Sensing at Centimeter-Scale Spatial Resolution by BOFDA: Measurements and Signal Processing , 2012, IEEE Photonics Journal.

[19]  Jianzhong Zhang,et al.  Chaotic Brillouin optical correlation-domain analysis. , 2017, Optics letters.

[20]  Sanghoon Chin,et al.  Sub-Centimeter Spatial Resolution in Distributed Fiber Sensing Based on Dynamic Brillouin Grating in Optical Fibers , 2012, IEEE Sensors Journal.

[21]  Toshihiko Yoshino,et al.  Wide-range temperature dependence of Brillouin shift in a dispersion-shifted fiber and its annealing effect , 2003 .

[22]  Benjamin J. Eggleton,et al.  Ultra-sensitive photonic crystal fiber refractive index sensor , 2009 .

[23]  K. Hotate,et al.  Synthesis of optical-coherence function and its applications in distributed and multiplexed optical sensing , 2006, Journal of Lightwave Technology.

[24]  K. Vahala,et al.  Microwave synthesizer using an on-chip Brillouin oscillator , 2013, Nature Communications.

[25]  Yair Antman,et al.  High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis. , 2014, Optics express.

[26]  Luc Thévenaz,et al.  Distributed fiber sensing using Brillouin echoes , 2008, International Conference on Optical Fibre Sensors.

[27]  K. Shimizu,et al.  Development of a distributed sensing technique using Brillouin scattering , 1995 .

[28]  Fabrizio Di Pasquale,et al.  Analysis of pulse modulation format in coded BOTDA sensors. , 2010, Optics express.

[29]  Genda Chen,et al.  Temperature-dependent strain and temperature sensitivities of fused silica single mode fiber sensors with pulse pre-pump Brillouin optical time domain analysis , 2016 .

[30]  K. Hotate,et al.  Investigation of Strain- and Temperature-Dependences of Brillouin Frequency Shifts in GeO$_{2}$ -Doped Optical Fibers , 2008, Journal of Lightwave Technology.

[31]  K. Vahala,et al.  Dual-microcavity narrow-linewidth Brillouin laser , 2014, 1410.2912.

[32]  I. Aldaya,et al.  Fiber taper diameter characterization using forward Brillouin scattering. , 2018, Optics letters.

[33]  L. Thévenaz,et al.  Brillouin gain spectrum characterization in single-mode optical fibers , 1997 .

[34]  Y. Vlasov,et al.  Raman amplification in ultrasmall silicon-on-insulator wire waveguides. , 2004, Optics express.

[35]  K. Sooley,et al.  Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature , 2009 .

[36]  Benjamin J Eggleton,et al.  Widely tunable, low phase noise microwave source based on a photonic chip. , 2016, Optics letters.

[37]  Raphaël Van Laer,et al.  Interaction between light and highly confined hypersound in a silicon photonic nanowire , 2014, Nature Photonics.

[38]  Guang-Can Guo,et al.  Brillouin-scattering-induced transparency and non-reciprocal light storage , 2014, Nature Communications.

[39]  Peter T. Rakich,et al.  RF-Photonic Filters via On-Chip Photonic–Phononic Emit–Receive Operations , 2017, Journal of Lightwave Technology.

[40]  X. Bao,et al.  32-km distributed temperature sensor based on Brillouin loss in an optical fiber. , 1993, Optics letters.

[41]  T. Newson,et al.  Contributed Review: Distributed optical fibre dynamic strain sensing. , 2016, The Review of scientific instruments.

[42]  Anthony W. Brown,et al.  Distributed sensor based on dark-pulse Brillouin scattering , 2005, IEEE Photonics Technology Letters.

[43]  Kazuo Hotate,et al.  All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber. , 2008 .

[44]  Liang Chen,et al.  Recent Progress in Distributed Fiber Optic Sensors , 2012, Sensors.

[45]  Luc Thévenaz,et al.  Distributed forward Brillouin sensor based on local light phase recovery , 2018, Nature Communications.

[46]  K. Hotate,et al.  Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator , 2006, IEEE Photonics Technology Letters.

[47]  Shelby,et al.  Guided acoustic-wave Brillouin scattering. , 1985, Physical review. B, Condensed matter.

[48]  Yosef London,et al.  Optomechanical time-domain reflectometry , 2018, Nature Communications.

[49]  Moritz Merklein,et al.  Phase-locked, chip-based, cascaded stimulated Brillouin scattering , 2014 .

[50]  Zuyuan He,et al.  Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis. , 2006, Optics letters.

[51]  M. W. Lee,et al.  Frequency-selective excitation of guided acoustic modes in a photonic crystal fiber. , 2011, Optics express.

[52]  V. Laude,et al.  Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres , 2006 .

[53]  A. Zadok,et al.  Random‐access distributed fiber sensing , 2012 .

[54]  Peter T. Rakich,et al.  Giant enhancement of stimulated Brillouin scattering in the sub-wavelength limit , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[55]  Mingjiang Zhang,et al.  Brillouin optical correlation domain analysis based on chaotic laser with suppressed time delay signature. , 2018, Optics express.

[56]  Limin Tong,et al.  Supercontinuum generation in submicrometer diameter silica fibers. , 2006, Optics express.

[57]  Marcelo A. Soto,et al.  Mapping the Uniformity of Optical Microwires Using Phase-Correlation Brillouin Distributed Measurements , 2015 .

[58]  Yang Liu,et al.  Brillouin spectroscopy of a hybrid silicon-chalcogenide waveguide with geometrical variations. , 2018, Optics letters.

[59]  P. Rakich,et al.  A silicon Brillouin laser , 2017, Science.

[60]  C. Cordeiro,et al.  Brillouin scattering self-cancellation , 2016, Nature Communications.

[61]  L. Thévenaz Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives , 2010 .

[62]  Moshe Tur,et al.  Experimental demonstration of localized Brillouin gratings with low off-peak reflectivity established by perfect Golomb codes. , 2013, Optics letters.

[63]  X. Bao,et al.  Coherent probe-pump-based Brillouin sensor for centimeter-crack detection. , 2005, Optics letters.

[64]  L. Thévenaz,et al.  Simple distributed fiber sensor based on Brillouin gain spectrum analysis. , 1996, Optics letters.

[65]  M. Lipson,et al.  Broad-band optical parametric gain on a silicon photonic chip , 2006, Nature.

[66]  Kwanil Lee,et al.  Bidirectional measurement for Brillouin optical correlation domain analysis. , 2012, Optics express.

[67]  A. Zadok,et al.  Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering , 2016 .

[68]  Kerry J. Vahala,et al.  Chemically etched ultrahigh-Q wedge-resonator on a silicon chip , 2012, Nature Photonics.

[69]  Benjamin J Eggleton,et al.  Narrow linewidth Brillouin laser based on chalcogenide photonic chip. , 2013, Optics letters.

[70]  Duk-Yong Choi,et al.  On-chip stimulated Brillouin scattering , 2010, 35th Australian Conference on Optical Fibre Technology.

[71]  T. Horiguchi,et al.  Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers. , 1990, Optics letters.

[72]  M. Soljačić,et al.  Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain. , 2012, Optics express.

[73]  Marcelo A. Soto,et al.  Time gated phase-correlation distributed Brillouin fibre sensor , 2013, Other Conferences.

[74]  Kazuo Hotate,et al.  Fiber Distributed Brillouin Sensing with Optical Correlation Domain Techniques , 2013, 2014 Asia Communications and Photonics Conference (ACP).

[75]  Kohei Suzuki,et al.  Temperature coefficient of sideband frequency produced by polarized guided acoustic-wave Brillouin scattering in highly nonlinear fibers , 2017 .

[76]  Anthony W. Brown,et al.  Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses. , 1999, Optics letters.

[77]  Thibaut Sylvestre,et al.  Surface Brillouin scattering in photonic crystal fibers. , 2016, Optics letters.

[78]  Moritz Merklein,et al.  A chip-integrated coherent photonic-phononic memory , 2016, Nature Communications.

[79]  Michal Lipson,et al.  CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects , 2010 .

[80]  Luc Thévenaz Monitoring of large structure using distributed Brillouin fibre sensing , 1999, International Conference on Optical Fibre Sensors.

[81]  Thibaut Sylvestre,et al.  Temperature coefficient of the high-frequency guided acoustic mode in a photonic crystal fiber. , 2011, Applied optics.

[82]  Yi Bao,et al.  High-temperature measurement with Brillouin optical time domain analysis of an annealed fused-silica single-mode fiber. , 2016, Optics letters.

[83]  P.E. Barclay,et al.  Evanescent coupling from optical fiber tapers to photonic crystal waveguides and resonators , 2003, Postconference Digest Quantum Electronics and Laser Science, 2003. QELS..

[84]  Thibaut Sylvestre,et al.  Experimental Observation of Large Guided Acoustic Wave Brillouin Scattering in Photonic Crystal Fibres , 2006, 2006 European Conference on Optical Communications.

[85]  Michael J. Steel,et al.  Brillouin resonance broadening due to structural variations in nanoscale waveguides , 2015, 1510.00079.

[86]  S Sales,et al.  Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers. , 2012, Optics express.

[87]  T. Horiguchi,et al.  Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave. , 1989, Optics letters.

[88]  Y.Liu,et al.  Compact Brillouin devices through hybrid integration on silicon , 2017, 1702.05233.

[89]  Thibaut Sylvestre,et al.  Brillouin spectroscopy of optical microwires , 2017, 1706.03990.

[90]  X. Bao,et al.  Dependence of the brillouin frequency shift on strain and temperature in a photonic crystal fiber. , 2004, Optics letters.

[91]  Luc Thévenaz,et al.  High Spatial and Spectral Resolution Long-Range Sensing Using Brillouin Echoes , 2011 .

[92]  Michal Lipson,et al.  Nonlinear optics in photonic nanowires. , 2008, Optics express.

[93]  T. Horiguchi,et al.  BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory , 1989 .

[94]  M. Facchini,et al.  Distributed sensing using stimulated Brillouin scattering : towards ultimate resolution , 1997 .

[95]  Benjamin J. Eggleton,et al.  Ultra-sensitive photonic crystal fiber refractive index sensor , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[96]  Luc Thévenaz,et al.  Probing molecular absorption under slow light propagation using a photonic crystal waveguide , 2012, Other Conferences.

[97]  Moshe Tur,et al.  Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing. , 2011, Optics express.

[98]  Y. Vlasov,et al.  Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides. , 2006, Optics express.

[99]  S. Leon-Saval,et al.  Supercontinuum generation in submicron fibre waveguides. , 2004, Optics express.

[100]  D. Marpaung,et al.  Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity , 2014, 1412.4236.

[101]  Liang Chen,et al.  Recent Progress in Brillouin Scattering Based Fiber Sensors , 2011, Sensors.

[102]  Thach G. Nguyen,et al.  On-chip correlation-based Brillouin sensing: design, experiment, and simulation , 2018, Journal of the Optical Society of America B.

[103]  Kazuo Hotate,et al.  Range-Enlargement of Simplified Brillouin Optical Correlation Domain Analysis Based on a Temporal Gating Scheme , 2008 .

[104]  M. Ohashi,et al.  Sound velocity measurement based on guided acoustic-wave Brillouin scattering , 1992, IEEE Photonics Technology Letters.

[105]  K. Ogusu,et al.  Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering , 1999, IEEE Photonics Technology Letters.

[106]  Thibaut Sylvestre,et al.  Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre , 2014, Nature Communications.

[107]  Kazuo Hotate,et al.  Measurement of Brillouin Gain Spectrum Distribution along an Optical Fiber Using a Correlation-Based Technique : Proposal, Experiment and Simulation (Special Issue on Optical Fiber Sensors) , 2000 .

[108]  Xiaogang Chen,et al.  Self-phase-modulation in submicron silicon-on-insulator photonic wires. , 2006, Optics express.

[109]  Yi Bao,et al.  Measuring Mortar Shrinkage and Cracking by Pulse Pre-Pump Brillouin Optical Time Domain Analysis with a Single Optical Fiber , 2015 .