Design of a CMOS bandgap Reference Circuit with a Wide temperature Range, High Precision and Low temperature coefficient

This paper presents an approach to the design of a high-precision CMOS voltage reference. The proposed circuit is designed for TSMC 0.35 μm standard CMOS process. We design the first-order temperature compensation bandgap voltage reference circuit. The proposed post-simulated circuit delivers an output voltage of 0.596 V and achieves the reported temperature coefficient (TC) of 3.96 ppm/°C within the temperature range from -60°C to 130°C when the supply voltage is 1.8 V. When simulated in a smaller temperature range from -40°C to 80°C, the circuit achieves the lowest reported TC of 2.09 ppm/°C. The reference current is 16.586 μA. This circuit provides good performances in a wide range of temperature with very small TC.

[1]  Ming-Dou Ker,et al.  A CMOS bandgap reference circuit for sub-1-V operation without using extra low-threshold-voltage device , 2004 .

[2]  Cosmin Popa,et al.  Superior-Order Curvature-Correction Techniques for Voltage References , 2009 .

[3]  Yiqiang Zhao,et al.  A high-order curvature-corrected CMOS bandgap voltage reference with constant current technique , 2014, Int. J. Circuit Theory Appl..

[4]  W. Guggenbuhl,et al.  A high-swing, high-impedance MOS cascode circuit , 1990 .

[5]  José A. Siqueira Dias,et al.  A curvature-compensated CMOS voltage reference using V2th characteristics , 2009, Microelectron. J..

[6]  Zhangming Zhu,et al.  A High Precision CMOS voltage Reference without resistors , 2012, J. Circuits Syst. Comput..

[7]  Kae-Dal Kwack,et al.  A Design of Temperature-Compensated Complementary Metal-Oxide Semiconductor Voltage Reference Sources with a Small Temperature Coefficient , 2008, IEICE Trans. Electron..

[8]  Nobuo Oki,et al.  Design of a CMOS voltage reference using current-model approach , 2011, 2011 IEEE Second Latin American Symposium on Circuits and Systems (LASCAS).

[9]  Jinghu Li,et al.  A 1.2-V Piecewise Curvature-Corrected Bandgap Reference in 0.5 $\mu$m CMOS Process , 2011, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[10]  Chi-Che Chen,et al.  Accurate current mirror with high output impedance , 2001, ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483).

[11]  Armin Tajalli,et al.  An area and power optimization technique for CMOS bandgap voltage references , 2010 .

[12]  Hossein Shamsi,et al.  A High PSRR Bandgap Voltage Reference with Virtually Diode-Connected MOS Transistors , 2010, IEICE Trans. Electron..

[13]  Luca Fanucci,et al.  Bandgap voltage Reference IC for HV Automotive Applications with Pseudo-Regulated Bias and Service regulator , 2013, J. Circuits Syst. Comput..

[14]  Bang-Sup Song,et al.  A precision curvature-compensated CMOS bandgap reference , 1983, 1983 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[15]  Ming-Dou Ker,et al.  New Curvature-Compensation Technique for CMOS Bandgap Reference With Sub-1-V Operation , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[16]  Chiang Liang Kok,et al.  A Novel Ultra-Low Power Two-Terminal Zener voltage Reference , 2012, J. Circuits Syst. Comput..

[17]  Abhirup Lahiri,et al.  Design of sub-1-V CMOS bandgap reference circuit using only one BJT , 2012 .

[18]  Fahim Clock Generators for SOC Processors , 2013 .

[19]  Albert Wang,et al.  A 3 V 110 μW 3.1 ppm/°C curvature-compensated CMOS bandgap reference , 2006 .

[20]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[21]  Hou-Ming Chen,et al.  A new temperature-compensated CMOS bandgap reference circuit for portable applications , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[22]  K. Sakui,et al.  A CMOS bandgap reference circuit with sub-1-V operation , 1999 .

[23]  Akira Matsuzawa,et al.  Sub 1 V CMOS bandgap reference design techniques: a survey , 2010 .

[24]  X. Ma,et al.  A Wide Supply Range bandgap voltage Reference with Curvature compensation , 2013, J. Circuits Syst. Comput..

[25]  T. R. Viswanathan,et al.  A 1.4 V Supply CMOS Fractional Bandgap Reference , 2006, IEEE Journal of Solid-State Circuits.

[26]  Franco Maloberti,et al.  Analog Design for CMOS VLSI Systems , 2001 .