On recent results of ergodic property for p -adic dynamical systems

Theory of dynamical systems in fields of p-adic numbers is an important part of algebraic and arithmetic dynamics. The study of p-adic dynamical systems is motivated by their applications in various areas of mathematics, physics, genetics, biology, cognitive science, neurophysiology, computer science, cryptology, etc. In particular, p-adic dynamical systems found applications in cryptography, which stimulated the interest to nonsmooth dynamical maps. An important class of (in general) nonsmooth maps is given by 1-Lipschitz functions. In this paper we present a recent summary of results about the class of 1-Lipschitz functions and describe measure-preserving (for the Haar measure on the ring of p-adic integers) and ergodic functions. The main mathematical tool used in this work is the representation of the function by the van der Put series which is actively used in p-adic analysis. The van der Put basis differs fundamentally from previously used ones (for example, the monomial and Mahler basis) which are related to the algebraic structure of p-adic fields. The basic point in the construction of van der Put basis is the continuity of the characteristic function of a p-adic ball. Also we use an algebraic structure (permutations) induced by coordinate functions with partially frozen variables.

[1]  Dongdai Lin,et al.  Ergodic theory over F2[[T]] , 2012, Finite Fields Their Appl..

[2]  Ekaterina Yurova,et al.  Criteria of ergodicity for p-adic dynamical systems in terms of coordinate functions , 2014 .

[4]  A. Khrennikov,et al.  Behaviour of Hensel perturbations of p-adic monomial dynamical systems , 2003 .

[5]  Ekaterina Yurova Van der Put basis and p-adic dynamics , 2010 .

[6]  David K. Arrowsmith,et al.  Some p-adic representations of the Smale horseshoe , 1993 .

[7]  Vladimir Anashin,et al.  Uniformly distributed sequences of p-adic integers, II , 2002, math/0209407.

[8]  M. V. Larin,et al.  Transitive polynomial transformations of residue class rings , 2002 .

[9]  Karl-Olof Lindahl On Siegel's linearization theorem for fields of prime characteristic , 2004 .

[10]  Sergio Albeverio,et al.  p-adic dynamic systems , 1998 .

[11]  Jia-Yan Yao,et al.  Strict ergodicity of affine p-adic dynamical systems on Zp , 2007 .

[12]  K. Mahler p-adic numbers and their functions , 1981 .

[13]  A. Khrennikov,et al.  Ergodicity criteria for non-expanding transformations of 2-adic spheres , 2012, 1205.0615.

[14]  A Yu Khrennikov,et al.  2-Adic clustering of the PAM matrix. , 2009, Journal of theoretical biology.

[15]  Andrei Khrennikov,et al.  T-functions revisited: new criteria for bijectivity/transitivity , 2014, Des. Codes Cryptogr..

[16]  Robert L. Benedetto,et al.  Hyperbolic maps in p-adic dynamics , 2001, Ergodic Theory and Dynamical Systems.

[17]  Franco Vivaldi,et al.  Pseudo-Randomness of Round-Off Errors in Discretized Linear Maps on the Plane , 2003, Int. J. Bifurc. Chaos.

[18]  p-adic affine dynamical systems and applications , 2006 .

[19]  Ekaterina Yurova On measure-preserving functions over ℤ3 , 2012 .

[20]  On Ergodic Behavior of p-adic dynamical systems , 2001, 0806.0260.

[21]  Per-Anders Svensson,et al.  Attracting fixed points of polynomial dynamical systems in fields of?$ p$-adic numbers , 2007 .

[22]  p-adic repellers in Qp are subshifts of finite type , 2007 .

[23]  J. Rivera-Letelier Espace hyperbolique p-adique et dynamique des fonctions rationnelles , 2003, Compositio Mathematica.

[24]  D. Arrowsmith,et al.  Geometry of p -adic Siegel discs , 1994 .

[25]  A. Khrennikov,et al.  Ergodicity of dynamical systems on 2-adic spheres , 2012 .

[26]  Andrei Khrennikov,et al.  Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models , 2011 .

[27]  Vladimir Anashin,et al.  Ergodic Transformations in the Space of p‐Adic Integers , 2006, math/0602083.

[28]  Components and Periodic Points in Non‐Archimedean Dynamics , 2002 .

[29]  Andrei Khrennikov,et al.  ATTRACTORS OF RANDOM DYNAMICAL SYSTEMS OVER P-ADIC NUMBERS AND A MODEL OF 'NOISY' COGNITIVE PROCESSES , 1999 .

[30]  Fabien Durand,et al.  Minimal polynomial dynamics on the set of 3‐adic integers , 2009, 1208.2016.

[31]  Marcus Nilsson,et al.  P-adic Deterministic and Random Dynamics , 2004 .

[32]  Andrei Khrennikov,et al.  Non-Archimedean Analysis , 1997 .

[33]  M. Van Der Put Algébres de Fonctions Continues p-Adiques. II , 1968 .

[34]  A. Khrennikov Gene expression from 2-adic dynamical systems , 2009 .

[35]  S. V. Kozyrev,et al.  Genetic code on the diadic plane , 2007, q-bio/0701007.

[36]  Vladimir Anashin,et al.  Characterization of ergodicity of p-adic dynamical systems by using the van der Put basis , 2011 .

[37]  Robert L. Benedetto p-Adic Dynamics and Sullivan's No Wandering Domains Theorem , 2000, Compositio Mathematica.

[38]  Franco Vivaldi,et al.  The Arithmetic of Discretized Rotations , 2006 .

[39]  A Khrennikov,et al.  Human subconscious as a p-adic dynamical system. , 1998, Journal of theoretical biology.

[40]  Youssef Fares,et al.  Minimal dynamical systems on a discrete valuation domain , 2009 .

[41]  Ekaterina Yurova,et al.  Criteria of measure-preserving for p-adic dynamical systems in terms of the van der Put basis , 2012 .

[42]  J. Silverman The Arithmetic of Dynamical Systems , 2007 .

[43]  Andrei Khrennikov,et al.  Applied Algebraic Dynamics , 2009 .

[44]  S Albeverio,et al.  Memory retrieval as a p-adic dynamical system. , 1999, Bio Systems.

[45]  V. S. Anachin Uniformly distributed sequences ofp-adic integers , 1994 .

[46]  A. Khrennikov,et al.  2-Adic numbers in genetics and Rumer’s symmetry , 2010 .

[47]  Andrei Khrennikov,et al.  P-Adic Dynamical Systems , 2004 .

[48]  Ekaterina Yurova,et al.  Using van der Put basis to determine if a 2-adic function is measure-preserving or ergodic w.r.t. Haar measure , 2011 .

[50]  W. H. Schikhof Ultrametric Calculus: An Introduction to p-Adic Analysis , 1984 .