Weak imposition of Dirichlet boundary conditions in fluid mechanics

Abstract Weakly enforced Dirichlet boundary conditions are compared with strongly enforced conditions for boundary layer solutions of the advection–diffusion equation and incompressible Navier–Stokes equations. It is found that weakly enforced conditions are effective and superior to strongly enforced conditions. The numerical tests involve low-order finite elements and a quadratic NURBS basis utilized in the Isogeometric Analysis approach. The convergence of the mean velocity profile for a turbulent channel flow suggests that weak no-slip conditions behave very much like a wall function model, although the design of the boundary condition is based purely on numerical, rather than physical or empirical, conditions.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  L. D. Marini,et al.  Stabilization mechanisms in discontinuous Galerkin finite element methods , 2006 .

[3]  P. Moin,et al.  Turbulence statistics in fully developed channel flow at low Reynolds number , 1987, Journal of Fluid Mechanics.

[4]  Thomas J. R. Hughes,et al.  Finite element modeling of blood flow in arteries , 1998 .

[5]  Endre Süli,et al.  Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem , 2001 .

[6]  C. Chinosi,et al.  Nonconforming locking-free flnite elements for Reissner-Mindlin plates , 2006 .

[7]  T. Hughes,et al.  Variational and Multiscale Methods in Turbulence , 2005 .

[8]  Slimane Adjerid,et al.  Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem , 2006 .

[9]  Ekkehard Ramm,et al.  A three-level finite element method for the instationary incompressible Navier?Stokes equations , 2004 .

[10]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[11]  Thomas J. R. Hughes,et al.  The Continuous Galerkin Method Is Locally Conservative , 2000 .

[12]  Arif Masud,et al.  A multiscale/stabilized finite element method for the advection–diffusion equation , 2004 .

[13]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[14]  Isaac Harari,et al.  Stability of semidiscrete formulations for parabolic problems at small time steps , 2004 .

[15]  Charbel Farhat,et al.  A Variational Multiscale Method for the Large Eddy Simulation of Compressible Turbulent Flows on Unstructured Meshes - Application to vortex shedding , 2004 .

[16]  Yan Xu,et al.  Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations , 2006 .

[17]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[18]  Pavel B. Bochev,et al.  On inf-sup stabilized finite element methods for transient problems , 2004 .

[19]  Thomas J. R. Hughes,et al.  Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow , 2004 .

[20]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[21]  Victor M. Calo,et al.  Residual-based multiscale turbulence modeling: Finite volume simulations of bypass transition , 2005 .

[22]  Ramon Codina,et al.  Approximation of the incompressible Navier-Stokes equations using orthogonal subscale stabilization and pressure segregation on anisotropic finite element meshes , 2004 .

[23]  A discontinuous Galerkin method for two-temperature plasmas , 2006 .

[24]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[25]  J. Oden,et al.  Convergence analysis of a discontinuous finite element formulation based on second order derivatives , 2006 .

[26]  K. Jansen,et al.  On the interaction between dynamic model dissipation and numerical dissipation due to streamline upwind/Petrov–Galerkin stabilization , 2005 .

[27]  J. Hesthaven,et al.  A level set discontinuous Galerkin method for free surface flows , 2006 .

[28]  D. Schötzau,et al.  An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity , 2006 .

[29]  T. Hughes,et al.  Sensitivity of the scale partition for variational multiscale LES of channel flow , 2004 .

[30]  G. Hauke,et al.  Computing reactive flows with a field Monte Carlo formulation and multi-scale methods , 2004 .

[31]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[32]  A. Buffa,et al.  Discontinuous Galerkin approximation of the Laplace eigenproblem , 2006 .

[33]  Tayfun E. Tezduyar,et al.  Enhanced-discretization space time technique (EDSTT) , 2004 .

[34]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[35]  Mark Embree,et al.  The role of the penalty in the local discontinuous Galerkin method for Maxwell’s eigenvalue problem , 2006 .

[36]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[37]  William Layton,et al.  Weak imposition of “no-slip” conditions in finite element methods , 1999 .

[38]  Thomas J. R. Hughes,et al.  Energy transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence: Comparison of dynamic Smagorinsky and multiscale models over a range of discretizations , 2004 .

[39]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[40]  Tayfun E. Tezduyar,et al.  Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements , 2004 .

[41]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[42]  Alvaro L. G. A. Coutinho,et al.  Stabilized methods and post-processing techniques for miscible displacements , 2004 .

[43]  Bernardo Cockburn,et al.  Discontinuous Galerkin methods for incompressible elastic materials , 2006 .

[44]  J. Oden,et al.  A discontinuous hp finite element method for convection—diffusion problems , 1999 .

[45]  Robert B. Haber,et al.  A space-time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance , 2006 .

[46]  Béatrice Rivière,et al.  Discontinuous finite element methods for incompressible flows on subdomains with non-matching interfaces , 2006 .

[47]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[48]  M. Bischoff,et al.  Improving stability and accuracy of Reissner–Mindlin plate finite elements via algebraic subgrid scale stabilization , 2004 .

[49]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[50]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[51]  Thomas J. R. Hughes,et al.  A stabilized mixed discontinuous Galerkin method for Darcy flow , 2006 .

[52]  M. Wheeler,et al.  Anisotropic and dynamic mesh adaptation for discontinuous Galerkin methods applied to reactive transport , 2006 .

[53]  Timothy J. Barth,et al.  On Discontinuous Galerkin Approximations of Boltzmann Moment Systems With Levermore Closure , 2006 .