CSRBF-Based Quasi-interpolation for Accurate and Fast Data Fitting
暂无分享,去创建一个
Shengjun Liu | Cai Yang | Xinru Liu | Jian Duan | Xinru Liu | S. Liu | Caiyi Yang | Jian Duan
[1] R. Schaback. Creating Surfaces from Scattered Data Using Radial Basis Functions , 1995 .
[2] M. J. D. Powell,et al. Radial basis functions for multivariable interpolation: a review , 1987 .
[3] L. Montefusco,et al. Radial basis functions for the multivariate interpolation of large scattered data sets , 2002 .
[4] Charlie C. L. Wang,et al. Quasi-interpolation for surface reconstruction from scattered data with radial basis function , 2012, Comput. Aided Geom. Des..
[5] Gregory E. Fasshauer,et al. Solving differential equations with radial basis functions: multilevel methods and smoothing , 1999, Adv. Comput. Math..
[6] Xuli Han,et al. Quasi-interpolation for Data Fitting by the Radial Basis Functions , 2008, GMP.
[7] Holger Wendland,et al. Meshless Galerkin methods using radial basis functions , 1999, Math. Comput..
[8] Holger Wendland,et al. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..
[9] E. Kansa. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .
[10] F. J. Sainz,et al. Constructive approximate interpolation by neural networks , 2006 .
[11] Holger Wendland,et al. Scattered Data Approximation: Conditionally positive definite functions , 2004 .
[12] Weixiang Zhang,et al. Shape-preserving MQ-B-splines quasi-interpolation , 2004, Geometric Modeling and Processing, 2004. Proceedings.
[13] Zongmin Wu,et al. Compactly supported positive definite radial functions , 1995 .
[14] Leevan Ling. Multivariate quasi-interpolation schemes for dimension-splitting multiquadric , 2005, Appl. Math. Comput..
[15] Ren-Hong Wang,et al. High accuracy multiquadric quasi-interpolation , 2011 .
[16] H. Seidel,et al. Multi-level partition of unity implicits , 2003 .
[17] E. Kansa,et al. Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations , 2000 .
[18] Hans-Peter Seidel,et al. 3D scattered data interpolation and approximation with multilevel compactly supported RBFs , 2005, Graph. Model..
[19] Martin D. Buhmann. Radial Basis Functions: Theory and Implementations: Radial basis functions with compact support , 2003 .
[20] Benny Y. C. Hon,et al. An efficient numerical scheme for Burgers' equation , 1998, Appl. Math. Comput..
[21] Carsten Franke,et al. Convergence order estimates of meshless collocation methods using radial basis functions , 1998, Adv. Comput. Math..
[22] Paolo Cignoni,et al. Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.
[23] Alessandra Sestini,et al. Local hybrid approximation for scattered data fitting with bivariate splines , 2006, Comput. Aided Geom. Des..
[24] Y. Hon,et al. A numerical computation for inverse boundary determination problem , 2000 .
[25] Michael M. Kazhdan,et al. Screened poisson surface reconstruction , 2013, TOGS.
[26] M. Golberg,et al. Improved multiquadric approximation for partial differential equations , 1996 .
[27] Jun Wang,et al. Multi-level hermite variational interpolation and quasi-interpolation , 2013, The Visual Computer.
[28] C. Micchelli,et al. Approximation by superposition of sigmoidal and radial basis functions , 1992 .
[29] Chen Debao. Degree of approximation by superpositions of a sigmoidal function , 1993, Approximation Theory and its Applications.
[30] Zongmin Wu,et al. Local error estimates for radial basis function interpolation of scattered data , 1993 .
[31] R. Schaback. Multivariate Interpolation by Polynomials and Radial Basis Functions , 2005 .
[32] Robert Schaback,et al. Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..