Molecular docking with Gaussian Boson Sampling

Photonic quantum devices called Gaussian Boson Samplers can be programmed to predict molecular docking configurations. Gaussian Boson Samplers are photonic quantum devices with the potential to perform intractable tasks for classical systems. As with other near-term quantum technologies, an outstanding challenge is to identify specific problems of practical interest where these devices can prove useful. Here, we show that Gaussian Boson Samplers can be used to predict molecular docking configurations, a central problem for pharmaceutical drug design. We develop an approach where the problem is reduced to finding the maximum weighted clique in a graph, and show that Gaussian Boson Samplers can be programmed to sample large-weight cliques, i.e., stable docking configurations, with high probability, even with photon losses. We also describe how outputs from the device can be used to enhance the performance of classical algorithms. To benchmark our approach, we predict the binding mode of a ligand to the tumor necrosis factor-α converting enzyme, a target linked to immune system diseases and cancer.

[1]  Raphaël Clifford,et al.  The Classical Complexity of Boson Sampling , 2017, SODA.

[2]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[3]  A. Serafini Quantum Continuous Variables: A Primer of Theoretical Methods , 2017 .

[4]  Kae Nemoto,et al.  Efficient classical simulation of continuous variable quantum information processes. , 2002, Physical review letters.

[5]  Tsvi Piran,et al.  Reviews of Modern Physics , 2002 .

[6]  B. Bollobás,et al.  Cliques in random graphs , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  Wayne J. Pullan,et al.  Dynamic Local Search for the Maximum Clique Problem , 2011, J. Artif. Intell. Res..

[8]  Stefano Pirandola,et al.  Quantum Fidelity for Arbitrary Gaussian States. , 2015, Physical review letters.

[9]  Sheng-Yong Yang,et al.  Pharmacophore modeling and applications in drug discovery: challenges and recent advances. , 2010, Drug discovery today.

[10]  Gerhard Klebe,et al.  Predicting binding modes, binding affinities and ‘hot spots’ for protein-ligand complexes using a knowledge-based scoring function , 2000 .

[11]  Scott Aaronson,et al.  The Computational Complexity of Linear Optics , 2014 .

[12]  G. Klebe,et al.  Statistical potentials and scoring functions applied to protein-ligand binding. , 2001, Current opinion in structural biology.

[13]  M. Liscidini,et al.  Scalable Squeezed Light Source for Continuous Variable Quantum Sampling , 2018, 2020 Conference on Lasers and Electro-Optics (CLEO).

[14]  Renxiao Wang,et al.  The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. , 2004, Journal of medicinal chemistry.

[15]  G. Guerreschi,et al.  Boson sampling for molecular vibronic spectra , 2014, Nature Photonics.

[16]  R. Feynman Simulating physics with computers , 1999 .

[17]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[18]  L. Vécsei [Nature Reviews Drug Discovery: editorial article of neuroscientists from Szeged about kynurenine (IF: 33.078)]. , 2014, Ideggyogyaszati szemle.

[19]  Wayne J. Pullan,et al.  Phased local search for the maximum clique problem , 2006, J. Comb. Optim..

[20]  Renxiao Wang,et al.  The PDBbind database: methodologies and updates. , 2005, Journal of medicinal chemistry.

[21]  Emanuele Perola,et al.  Novel thiol-based TACE inhibitors: rational design, synthesis, and SAR of thiol-containing aryl sulfonamides. , 2007, Bioorganic & medicinal chemistry letters.

[22]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[23]  S. Yue Distance-constrained molecular docking by simulated annealing. , 1990, Protein Engineering.

[24]  Juan Miguel Arrazola,et al.  Using Gaussian Boson Sampling to Find Dense Subgraphs. , 2018, Physical review letters.

[25]  Juan Miguel Arrazola,et al.  Classical benchmarking of Gaussian Boson Sampling on the Titan supercomputer , 2018, Quantum Inf. Process..

[26]  G. Klebe,et al.  Knowledge-based scoring function to predict protein-ligand interactions. , 2000, Journal of molecular biology.

[27]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[28]  Todd J. A. Ewing,et al.  Critical evaluation of search algorithms for automated molecular docking and database screening , 1997, J. Comput. Chem..

[29]  W. Marsden I and J , 2012 .

[30]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[31]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[32]  I. Kuntz,et al.  Matching chemistry and shape in molecular docking. , 1993, Protein engineering.

[33]  Thomas Lengauer,et al.  Flexible docking under pharmacophore type constraints , 2002, J. Comput. Aided Mol. Des..

[34]  J. O'Brien,et al.  Simulating the vibrational quantum dynamics of molecules using photonics , 2018, Nature.

[35]  Osman F. Güner,et al.  Pharmacophore perception, development, and use in drug design , 2000 .

[36]  Wolfram,et al.  Undecidability and intractability in theoretical physics. , 1985, Physical review letters.

[37]  Rama Ranganathan,et al.  Knowledge-based potentials in protein design. , 2006, Current opinion in structural biology.

[38]  A Laing,et al.  Boson sampling from a Gaussian state. , 2014, Physical review letters.

[39]  Carolyn R. Bertozzi,et al.  Methods and Applications , 2009 .

[40]  E. R. Caianiello,et al.  On quantum field theory — I: explicit solution of Dyson’s equation in electrodynamics without use of feynman graphs , 1953 .

[41]  A. Lim,et al.  European Journal of Operational Research 2008 Guo Li Lim Rodrigues , 2008 .

[42]  Alexander I. Barvinok,et al.  Combinatorics and Complexity of Partition Functions , 2017, Algorithms and combinatorics.

[43]  J. Bajorath,et al.  Docking and scoring in virtual screening for drug discovery: methods and applications , 2004, Nature Reviews Drug Discovery.

[44]  Juan Miguel Arrazola,et al.  Quantum approximate optimization with Gaussian boson sampling , 2018, Physical Review A.

[45]  Marcel L Verdonk,et al.  General and targeted statistical potentials for protein–ligand interactions , 2005, Proteins.

[46]  Maliheh Aramon,et al.  Enhancing quantum annealing performance for the molecular similarity problem , 2017, Quantum Information Processing.

[47]  Qinghua Wu,et al.  A review on algorithms for maximum clique problems , 2015, Eur. J. Oper. Res..

[48]  J. Gready,et al.  Combining docking and molecular dynamic simulations in drug design , 2006, Medicinal research reviews.

[49]  Sae Woo Nam,et al.  Approximating vibronic spectroscopy with imperfect quantum optics , 2017, Journal of Physics B: Atomic, Molecular and Optical Physics.

[50]  Nicolò Spagnolo,et al.  Experimental scattershot boson sampling , 2015, Science Advances.

[51]  V. Buchstaber,et al.  Mathematical Proceedings of the Cambridge Philosophical Society , 1979 .

[52]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[53]  Phil B. Alper,et al.  Bioorganic & Medicinal Chemistry Letters , 2001, Bioorganic & Medicinal Chemistry Letters.

[54]  Brian K. Shoichet,et al.  Virtual screening of chemical libraries , 2004, Nature.

[55]  G. Giacomello,et al.  Proteins structure. , 1957, Scientia medica italica. English ed.

[56]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[57]  Yi-Ping Phoebe Chen,et al.  Structure-based drug design to augment hit discovery. , 2011, Drug discovery today.

[58]  Ivan Gutman,et al.  Some properties of the Narumi-Katayama index , 2012, Appl. Math. Lett..

[59]  Paul Watson,et al.  Virtual Screening Using Protein-Ligand Docking: Avoiding Artificial Enrichment , 2004, J. Chem. Inf. Model..

[60]  Robert P. Sheridan,et al.  FLOG: A system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[61]  Ruth Nussinov,et al.  Principles of docking: An overview of search algorithms and a guide to scoring functions , 2002, Proteins.

[62]  R. Sheridan,et al.  SQ: a program for rapidly producing pharmacophorically relevent molecular superpositions. , 1999, Journal of medicinal chemistry.

[63]  Brian K. Shoichet,et al.  Molecular docking using shape descriptors , 1992 .

[64]  M. Mezei,et al.  Molecular docking: a powerful approach for structure-based drug discovery. , 2011, Current computer-aided drug design.

[65]  Jun Feng,et al.  A Quantum-Inspired Method for Three-Dimensional Ligand-Based Virtual Screening , 2019, J. Chem. Inf. Model..

[66]  Christian Weedbrook,et al.  Gaussian boson sampling for perfect matchings of arbitrary graphs , 2017, Physical Review A.

[67]  Yi Hu,et al.  Experimental Gaussian Boson sampling. , 2019, Science bulletin.

[68]  D. K. Friesen,et al.  A combinatorial algorithm for calculating ligand binding , 1984 .

[69]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .

[70]  Jie Li,et al.  PDB-wide collection of binding data: current status of the PDBbind database , 2015, Bioinform..

[71]  Andreas Björklund,et al.  A Faster Hafnian Formula for Complex Matrices and Its Benchmarking on a Supercomputer , 2018, ACM J. Exp. Algorithmics.

[72]  Igor Jex,et al.  Gaussian Boson sampling , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).

[73]  Walter Filgueira de Azevedo,et al.  Molecular docking algorithms. , 2008, Current drug targets.

[74]  Raphael Nudelman,et al.  Drug Insight: tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis , 2008, Nature Clinical Practice Rheumatology.

[75]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[76]  Saieed Akbari,et al.  Upper bounds on the number of perfect matchings and directed 2-factors in graphs with given number of vertices and edges , 2013, Eur. J. Comb..

[77]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[78]  Journal of Computer-Aided Molecular Design incorporating Perspectives in Drug Discovery and Design , 2005 .

[79]  Z. Weng,et al.  Integrating statistical pair potentials into protein complex prediction , 2007, Proteins.

[80]  Juan Miguel Arrazola,et al.  Gaussian boson sampling using threshold detectors , 2018, Physical Review A.

[81]  C. E. Peishoff,et al.  A critical assessment of docking programs and scoring functions. , 2006, Journal of medicinal chemistry.

[82]  Raphaël Clifford,et al.  Classical boson sampling algorithms with superior performance to near-term experiments , 2017, Nature Physics.

[83]  I. Kuntz,et al.  Docking flexible ligands to macromolecular receptors by molecular shape. , 1986, Journal of medicinal chemistry.

[84]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[85]  M. Pollack Journal of Artificial Intelligence Research: Preface , 2001 .