PROPER MOTIONS OF THE ARCHES CLUSTER WITH KECK LASER GUIDE STAR ADAPTIVE OPTICS: THE FIRST KINEMATIC MASS MEASUREMENT OF THE ARCHES

We report the first detection of the intrinsic velocity dispersion of the Arches cluster—a young (∼2 Myr), massive (104 M☉) starburst cluster located only 26 pc in projection from the Galactic center. This was accomplished using proper motion measurements within the central 10″ × 10″ of the cluster, obtained with the laser guide star adaptive optics system at Keck Observatory over a three-year time baseline (2006–2009). This uniform data set results in proper motion measurements that are improved by a factor ∼5 over previous measurements from heterogeneous instruments. By careful, simultaneous accounting of the cluster and field contaminant distributions as well as the possible sources of measurement uncertainties, we estimate the internal velocity dispersion to be 0.15 ± 0.01 mas yr−1, which corresponds to 5.4 ± 0.4 km s−1 at a distance of 8.4 kpc. Projecting a simple model for the cluster onto the sky to compare with our proper motion data set, in conjunction with surface density data, we estimate the total present-day mass of the cluster to be M(r < 1.0 pc) = 1.5+0.74−0.60 × 104 M☉. The mass in stars observed within a cylinder of radius R (for comparison to photometric estimates) is found to be M(R < 0.4 pc) = 0.90+0.40−0.35 × 104 M☉ at formal 3σ confidence. This mass measurement is free from assumptions about the mass function of the cluster, and thus may be used to check mass estimates from photometry and simulation. Photometric mass estimates assuming an initially Salpeter mass function (Γ0 = 1.35, or Γ ∼ 1.0 at present, where dN/d(log M)∝MΓ) suggest a total cluster mass Mcl ∼ (4–6) × 104 M☉ and projected mass (∼ 2 ⩽ M(R < 0.4 pc) ⩽ 3) × 104 M☉. Photometric mass estimates assuming a globally top-heavy or strongly truncated present-day mass function (PDMF; with Γ ∼ 0.6) yield mass estimates closer to M(R < 0.4 pc) ∼ 1–1.2 × 104 M☉. Consequently, our results support a PDMF that is either top-heavy or truncated at low mass, or both. Collateral benefits of our data and analysis include: (1) cluster membership probabilities, which may be used to extract a clean-cluster sample for future photometric work; (2) a refined estimate of the bulk motion of the Arches cluster with respect to the field, which we find to be 172 ± 15 km s−1, which is slightly slower than suggested by previous measurements using one epoch each with the Very Large Telescope and the Keck telescope; and (3) a velocity dispersion estimate for the field itself, which is likely dominated by the inner Galactic bulge and the nuclear disk.

[1]  Sam T. Roweis,et al.  Extreme deconvolution: Inferring complete distribution functions from noisy, heterogeneous and incomplete observations , 2009, 0905.2979.

[2]  J. Anderson,et al.  IMPROVING GALACTIC CENTER ASTROMETRY BY REDUCING THE EFFECTS OF GEOMETRIC DISTORTION , 2010, 1010.0064.

[3]  A. McWilliam,et al.  TWO RED CLUMPS AND THE X-SHAPED MILKY WAY BULGE , 2010, 1008.0519.

[4]  Olivier Schnurr,et al.  The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M⊙ stellar mass limit , 2010, 1007.3284.

[5]  Tuan Do,et al.  DISKS IN THE ARCHES CLUSTER—SURVIVAL IN A STARBURST ENVIRONMENT , 2010, 1006.1004.

[6]  C. Babusiaux,et al.  Insights on the Milky Way bulge formation from the correlations between kinematics and metallicity , 2010, 1005.3919.

[7]  R. Rich,et al.  OUR MILKY WAY AS A PURE-DISK GALAXY—A CHALLENGE FOR GALAXY FORMATION , 2010, 1005.0385.

[8]  Simon Portegies Zwart,et al.  Young Massive Star Clusters , 2010, 1002.1961.

[9]  Cambridge,et al.  A Universal Stellar Initial Mass Function? A critical look at variations in extreme environments , 2010, 1001.2965.

[10]  Amsterdam,et al.  On the velocity dispersion of young star clusters: super-virial or binaries? , 2009, 0911.1557.

[11]  Roeland P. van der Marel,et al.  NEW LIMITS ON AN INTERMEDIATE-MASS BLACK HOLE IN OMEGA CENTAURI. I. HUBBLE SPACE TELESCOPE PHOTOMETRY AND PROPER MOTIONS , 2009, 0905.0627.

[12]  Reinhard Genzel,et al.  What is limiting near-infrared astrometry in the Galactic Centre? , 2009, 0909.2592.

[13]  T. Paumard,et al.  AN EXTREMELY TOP-HEAVY INITIAL MASS FUNCTION IN THE GALACTIC CENTER STELLAR DISKS , 2009, 0908.2177.

[14]  Andreas Koch,et al.  KINEMATICS AT THE EDGE OF THE GALACTIC BULGE: EVIDENCE FOR CYLINDRICAL ROTATION , 2009, 0908.1109.

[15]  S. P. Portegies Zwart,et al.  DYNAMICAL MASS SEGREGATION ON A VERY SHORT TIMESCALE , 2009, 0906.4806.

[16]  J. Melnick,et al.  The massive star initial mass function of the Arches cluster , 2009, 0903.2222.

[17]  A. Eckart,et al.  The nuclear star cluster of the Milky Way: proper motions and mass , 2009, 0902.3892.

[18]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[19]  M. Livio,et al.  Stellar Proper Motions in the Galactic Bulge from Deep Hubble Space Telescope ACS WFC Photometry , 2008, 0809.1682.

[20]  Jessica R. Lu,et al.  A DISK OF YOUNG STARS AT THE GALACTIC CENTER AS DETERMINED BY INDIVIDUAL STELLAR ORBITS , 2008, 0808.3818.

[21]  I. A. Bonnell,et al.  Star Formation Around Supermassive Black Holes , 2008, Science.

[22]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[23]  Moscow,et al.  The early expansion of cluster cores , 2008, 0806.1460.

[24]  R. Klessen,et al.  On the Constancy of the Characteristic Mass of Young Stars , 2008, 0803.4411.

[25]  C. McKee,et al.  A minimum column density of 1 g cm-2 for massive star formation , 2008, Nature.

[26]  R. Genzel,et al.  The most massive stars in the Arches cluster , 2007, 0711.0657.

[27]  Jessica R. Lu,et al.  The Proper Motion of the Arches Cluster with Keck Laser-Guide Star Adaptive Optics , 2007, 0706.4133.

[28]  S. Dib THE UNUSUAL STELLAR MASS FUNCTION OF STABBURST CLUSTERS , 2007 .

[29]  F. Eisenhauer,et al.  The Initial Mass Function of the Massive Star-forming Region NGC 3603 from Near-Infrared Adaptive Optics Observations , 2007, 0710.2882.

[30]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[31]  Taiwan,et al.  The present day mass function in the central region of the Arches cluster , 2007, astro-ph/0702693.

[32]  T. Mahoney,et al.  Tracing the long bar with red-clump giants , 2007, astro-ph/0702109.

[33]  S. Ortolani,et al.  Oxygen, Sodium, Magnesium and Aluminium as tracers of the Galactic Bulge Formation , 2006, astro-ph/0610346.

[34]  R. Rich,et al.  Evidence of a Metal-rich Galactic Bar from the Vertex Deviation of the Velocity Ellipsoid , 2006, astro-ph/0611433.

[35]  R. Kudritzki,et al.  The Arches Cluster Mass Function , 2006, astro-ph/0611377.

[36]  M. Smith,et al.  WFCAM, Spitzer/IRAC and SCUBA observations of the massive star-forming region DR21/W75 - I. The collimated molecular jets , 2006, astro-ph/0610186.

[37]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Performance Characterization , 2006 .

[38]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview , 2006 .

[39]  L. Chomiuk,et al.  First GLIMPSE Results on the Stellar Structure of the Galaxy , 2005, astro-ph/0508325.

[40]  Wolfgang Brandner,et al.  The Arches Cluster: Evidence for a Truncated Mass Function? , 2005, astro-ph/0506575.

[41]  D. Figer An upper limit to the masses of stars , 2005, Nature.

[42]  Jessica R. Lu,et al.  The First Laser Guide Star Adaptive Optics Observations of the Galactic Center: Sgr A*’s Infrared Color and the Extended Red Emission in its Vicinity , 2005, astro-ph/0508664.

[43]  Linda J. Smith,et al.  The Formation and Evolution of Massive Young Star Clusters , 2004 .

[44]  S. Picaud,et al.  3D outer bulge structure from near infrared star counts , 2004, astro-ph/0407361.

[45]  R. Kudritzki,et al.  Metallicity in the Galactic Center: The Arches Cluster , 2004, astro-ph/0407188.

[46]  I. Bonnell,et al.  Massive star formation: nurture, not nature , 2004, astro-ph/0401059.

[47]  R. Mathieu,et al.  WIYN Open Cluster Study. XVII. Astrometry and Membership to V = 21 in NGC 188 , 2003, astro-ph/0309749.

[48]  Mark Morris,et al.  Dynamical Friction on Star Clusters near the Galactic Center , 2003, astro-ph/0307271.

[49]  W. Press,et al.  Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3 , 2003 .

[50]  Eugene Serabyn,et al.  Massive Stars in the Arches Cluster , 2002, astro-ph/0208145.

[51]  E. Grebel,et al.  The mass function of the Arches cluster from Gemini adaptive optics data , 2002, astro-ph/0206360.

[52]  R. Launhardt,et al.  The Nuclear Bulge of the Galaxy. III. Large-Scale Physical Characteristics of Stars and Interstellar Matter , 2002, astro-ph/0201294.

[53]  P. Kroupa The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.

[54]  A. Cotera,et al.  Detection of X-Ray Emission from the Arches Cluster near the Galactic Center , 2001, astro-ph/0108174.

[55]  P. Hut,et al.  The Lives and Deaths of Star Clusters near the Galactic Center , 2001, astro-ph/0102259.

[56]  Laird M. Close,et al.  Analysis of isoplanatic high resolution stellar fields by the StarFinder code , 2000 .

[57]  D. Schaerer,et al.  Database of Geneva stellar evolution tracks and isochrones for (UBV) J (RI) C JHKLL'M, HST-WFPC2, Geneva and Washington photometric systems , 2000, astro-ph/0011497.

[58]  M. Morris,et al.  N-Body Simulations of Compact Young Clusters near the Galactic Center , 2000, astro-ph/0008441.

[59]  E. Serabyn,et al.  Hubble Space Telescope/NICMOS Observations of Massive Stellar Clusters near the Galactic Center , 1999 .

[60]  M. Morris,et al.  Evaporation of Compact Young Clusters near the Galactic Center , 1999, astro-ph/9905325.

[61]  R. Hook,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998, astro-ph/9808087.

[62]  E. Serabyn,et al.  An extraordinary cluster of massive stars near the centre of the Milky Way , 1998, Nature.

[63]  Michael G. Burton,et al.  The Discovery of Hot Stars near the Galactic Center Thermal Radio Filaments , 1996 .

[64]  Samuel Harvey Moseley,et al.  Morphology, near infrared luminosity, and mass of the galactic bulge from Cobe dirbe observations , 1995 .

[65]  V. Kozhurina-Platais,et al.  A Proper-Motion Study of the Open Cluster NGC 3680 , 1995 .

[66]  Naoto Kobayashi,et al.  Object 17: Another Cluster of Emission-Line Stars Near the Galactic Center , 1995 .

[67]  D.N.Spergel,et al.  Signatures of bulge triaxiality from kinematics in Baade's window , 1994, astro-ph/9409024.

[68]  R. Rich,et al.  The First Detailed Abundance Analysis of Galactic Bulge K Giants in Baade's Window , 1994 .

[69]  Mark R. Morris,et al.  Massive star formation near the Galactic center and the fate of the stellar remnants , 1993 .

[70]  H. Richer,et al.  The Mass and Stellar Content of the Globular Cluster M13 , 1992 .

[71]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[72]  M. Morris,et al.  The thermal, arched filaments of the radio Arc near the Galactic center: magnetohydrodynamic-induced ionization? , 1989 .

[73]  D. Merritt,et al.  The mass of the open star cluster M35 as derived from proper motions , 1989 .

[74]  B. Jones,et al.  Proper Motions and Variabilities of Stars Near the Orion Nebula , 1988 .

[75]  M. Morris,et al.  Large, highly organized radio structures near the galactic centre , 1984, Nature.

[76]  Glenn E. Miller,et al.  The Initial mass function and stellar birthrate in the solar neighborhood , 1979 .

[77]  S. Bowyer,et al.  Parameter estimation in X-ray astronomy , 1976 .

[78]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[79]  Ivan R. King,et al.  The structure of star clusters. I. an empirical density law , 1962 .

[80]  E. Salpeter The Luminosity function and stellar evolution , 1955 .