Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS).

PURPOSE The results of the Iressa Pan-Asia Study (IPASS), which compared gefitinib and carboplatin/paclitaxel in previously untreated never-smokers and light ex-smokers with advanced pulmonary adenocarcinoma were published previously. This report presents overall survival (OS) and efficacy according to epidermal growth factor receptor (EGFR) biomarker status. PATIENTS AND METHODS In all, 1,217 patients were randomly assigned. Biomarkers analyzed were EGFR mutation (amplification mutation refractory system; 437 patients evaluable), EGFR gene copy number (fluorescent in situ hybridization; 406 patients evaluable), and EGFR protein expression (immunohistochemistry; 365 patients evaluable). OS analysis was performed at 78% maturity. A Cox proportional hazards model was used to assess biomarker status by randomly assigned treatment interactions for progression-free survival (PFS) and OS. RESULTS OS (954 deaths) was similar for gefitinib and carboplatin/paclitaxel with no significant difference between treatments overall (hazard ratio [HR], 0.90; 95% CI, 0.79 to 1.02; P = .109) or in EGFR mutation-positive (HR, 1.00; 95% CI, 0.76 to 1.33; P = .990) or EGFR mutation-negative (HR, 1.18; 95% CI, 0.86 to 1.63; P = .309; treatment by EGFR mutation interaction P = .480) subgroups. A high proportion (64.3%) of EGFR mutation-positive patients randomly assigned to carboplatin/paclitaxel received subsequent EGFR tyrosine kinase inhibitors. PFS was significantly longer with gefitinib for patients whose tumors had both high EGFR gene copy number and EGFR mutation (HR, 0.48; 95% CI, 0.34 to 0.67) but significantly shorter when high EGFR gene copy number was not accompanied by EGFR mutation (HR, 3.85; 95% CI, 2.09 to 7.09). CONCLUSION EGFR mutations are the strongest predictive biomarker for PFS and tumor response to first-line gefitinib versus carboplatin/paclitaxel. The predictive value of EGFR gene copy number was driven by coexisting EGFR mutation (post hoc analysis). Treatment-related differences observed for PFS in the EGFR mutation-positive subgroup were not apparent for OS. OS results were likely confounded by the high proportion of patients crossing over to the alternative treatment.

[1]  M. Nishimura,et al.  A phase II trial of gefitinib as first-line therapy for advanced non-small cell lung cancer with epidermal growth factor receptor mutations , 2006, British Journal of Cancer.

[2]  Y. Tomizawa,et al.  Phase II prospective study of the efficacy of gefitinib for the treatment of stage III/IV non-small cell lung cancer with EGFR mutations, irrespective of previous chemotherapy. , 2007, Lung cancer.

[3]  F. Hirsch,et al.  Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced non-small-cell lung cancer. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[4]  S. Toyooka,et al.  Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. , 2010, The Lancet. Oncology.

[5]  W. Sauerbrei,et al.  Reporting recommendations for tumor marker prognostic studies (REMARK). , 2005, Journal of the National Cancer Institute.

[6]  W. Pao,et al.  Specific EGFR mutations predict treatment outcome of stage IIIB/IV patients with chemotherapy-naive non-small-cell lung cancer receiving first-line gefitinib monotherapy. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[7]  J. Minna,et al.  EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients. , 2005, Cancer research.

[8]  S. Gabriel,et al.  EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy , 2004, Science.

[9]  David Cella,et al.  Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. , 2003, JAMA.

[10]  Alona Muzikansky,et al.  First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[11]  Edward S. Kim,et al.  Molecular predictors of outcome with gefitinib and docetaxel in previously treated non-small-cell lung cancer: data from the randomized phase III INTEREST trial. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  K. Matsuo,et al.  Prospective Validation for Prediction of Gefitinib Sensitivity by Epidermal Growth Factor Receptor Gene Mutation in Patients with Non-Small Cell Lung Cancer , 2007, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[13]  Edward S. Kim,et al.  Oral Epithelium as a Surrogate Tissue for Assessing Smoking-Induced Molecular Alterations in the Lungs , 2008, Cancer Prevention Research.

[14]  Kevin Carroll,et al.  Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer) , 2005, The Lancet.

[15]  A. Gemma,et al.  F1000 highlights , 2010 .

[16]  F. Hirsch,et al.  Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: a Southwest Oncology Group Study. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[17]  Edward S. Kim,et al.  Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial , 2008, The Lancet.

[18]  A. Gazdar,et al.  Lung cancer in never smokers — a different disease , 2007, Nature Reviews Cancer.

[19]  Lesley Seymour,et al.  Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[20]  X. Wang,et al.  Relationship between NFKB1 -94 insertion/deletion ATTG polymorphism and susceptibility of cervical squamous cell carcinoma risk. , 2010, Annals of oncology : official journal of the European Society for Medical Oncology.

[21]  F. Hirsch,et al.  Randomized phase II study of gefitinib compared with placebo in chemotherapy-naive patients with advanced non-small-cell lung cancer and poor performance status. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  T. Mok,et al.  Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. , 2009, The New England journal of medicine.

[23]  Lesley Seymour,et al.  Erlotinib in lung cancer - molecular and clinical predictors of outcome. , 2005, The New England journal of medicine.

[24]  D. Whitcombe,et al.  Detection of PCR products using self-probing amplicons and fluorescence , 1999, Nature Biotechnology.

[25]  K. Hagiwara,et al.  Gefitinib for non-small-cell lung cancer patients with epidermal growth factor receptor gene mutations screened by peptide nucleic acid-locked nucleic acid PCR clamp , 2006, British Journal of Cancer.

[26]  Elisa Rossi,et al.  Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. , 2005, Journal of the National Cancer Institute.

[27]  Masahiro Fukuoka,et al.  Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[28]  Patricia L. Harris,et al.  Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. , 2004, The New England journal of medicine.

[29]  T. Oyama,et al.  Prospective phase II study of gefitinib in non-small cell lung cancer with epidermal growth factor receptor gene mutations. , 2009, Lung Cancer.

[30]  C Summers,et al.  Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). , 1989, Nucleic acids research.

[31]  M. Maemondo,et al.  Prospective phase II study of gefitinib for chemotherapy-naive patients with advanced non-small-cell lung cancer with epidermal growth factor receptor gene mutations. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[32]  Y. Yatabe,et al.  Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer , 2007, Cancer science.

[33]  S. Kudoh,et al.  Multicentre prospective phase II trial of gefitinib for advanced non-small cell lung cancer with epidermal growth factor receptor mutations: results of the West Japan Thoracic Oncology Group trial (WJTOG0403) , 2008, British Journal of Cancer.

[34]  J. Minna,et al.  A Translational View of the Molecular Pathogenesis of Lung Cancer , 2007, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[35]  Mariano Provencio,et al.  Screening for epidermal growth factor receptor mutations in lung cancer. , 2009, The New England journal of medicine.