The chromatin remodeling enzyme Chd4 regulates genome architecture in the mouse brain

[1]  A. Bonni,et al.  Regulation of neuronal connectivity in the mammalian brain by chromatin remodeling , 2019, Current Opinion in Neurobiology.

[2]  Harrison W. Gabel,et al.  MeCP2 Represses Enhancers through Chromosome Topology-Associated DNA Methylation. , 2019, Molecular cell.

[3]  Robert S. Illingworth,et al.  Decreased Enhancer-Promoter Proximity Accompanying Enhancer Activation , 2019, Molecular cell.

[4]  P. Fraser,et al.  Long-range enhancer–promoter contacts in gene expression control , 2019, Nature Reviews Genetics.

[5]  D. Dorsett The Many Roles of Cohesin in Drosophila Gene Transcription. , 2019, Trends in genetics : TIG.

[6]  Jesse M. Gray,et al.  Cell-type-specific programs for activity-regulated gene expression , 2019, Current Opinion in Neurobiology.

[7]  M. Tolstorukov,et al.  Chromatin restriction by the nucleosome remodeler Mi-2β and functional interplay with lineage-specific transcription regulators control B-cell differentiation , 2019, Genes & development.

[8]  A. Feeney,et al.  CHD4 is essential for transcriptional repression and lineage progression in B lymphopoiesis , 2019, Proceedings of the National Academy of Sciences.

[9]  Corella S. Casas-Delucchi,et al.  A Role for Chromatin Remodeling in Cohesin Loading onto Chromosomes , 2019, Molecular cell.

[10]  T. Holy,et al.  Sensory Experience Remodels Genome Architecture in Neural Circuit to Drive Motor Learning , 2019, Nature.

[11]  Michael B. Stadler,et al.  Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors , 2019, Nature.

[12]  Y. Saeys,et al.  Stabilization of cytokine mRNAs in iNKT cells requires the serine-threonine kinase IRE1alpha , 2018, Nature Communications.

[13]  R. Pfundt,et al.  CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language , 2018, Nature Communications.

[14]  V. Corces,et al.  Organizational principles of 3D genome architecture , 2018, Nature Reviews Genetics.

[15]  B. Wollnik,et al.  Mutational Landscapes and Phenotypic Spectrum of SWI/SNF-Related Intellectual Disability Disorders , 2018, Front. Mol. Neurosci..

[16]  Michael L. Waskom,et al.  mwaskom/seaborn: v0.9.0 (July 2018) , 2018 .

[17]  Joseph P. McCleery,et al.  Diagnosis and management of Cornelia de Lange syndrome: first international consensus statement , 2018, Nature Reviews Genetics.

[18]  Susanne Bornelöv,et al.  The Nucleosome Remodeling and Deacetylation Complex Modulates Chromatin Structure at Sites of Active Transcription to Fine-Tune Gene Expression , 2018, Molecular cell.

[19]  Jennifer E. Phillips-Cremins,et al.  LADL: Light-activated dynamic looping for endogenous gene expression control , 2018, bioRxiv.

[20]  A. West,et al.  Chromatin Regulation of Neuronal Maturation and Plasticity , 2018, Trends in Neurosciences.

[21]  J. Trimmer,et al.  Kv2 Ion Channels Determine the Expression and Localization of the Associated AMIGO-1 Cell Adhesion Molecule in Adult Brain Neurons , 2018, Front. Mol. Neurosci..

[22]  A. Tanay,et al.  Multiscale 3D Genome Rewiring during Mouse Neural Development , 2017, Cell.

[23]  Erez Lieberman Aiden,et al.  Cohesin Loss Eliminates All Loop Domains , 2017, Cell.

[24]  Nuno A. Fonseca,et al.  Two independent modes of chromatin organization revealed by cohesin removal , 2017, Nature.

[25]  Mark Gerstein,et al.  Measuring the reproducibility and quality of Hi-C data , 2017, Genome Biology.

[26]  I. Krantz,et al.  Missense variants in the chromatin remodeler CHD1 are associated with neurodevelopmental disability , 2017, Journal of Medical Genetics.

[27]  William Stafford Noble,et al.  HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient , 2017, bioRxiv.

[28]  B. Franklin Pugh,et al.  Understanding nucleosome dynamics and their links to gene expression and DNA replication , 2017, Nature Reviews Molecular Cell Biology.

[29]  L. Mirny,et al.  Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization , 2017, Cell.

[30]  Janet Iwasa,et al.  Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes , 2017, Nature Reviews Molecular Cell Biology.

[31]  Deciphering Developmental Disorders Study,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[32]  Jeroen A. A. Demmers,et al.  Nipbl Interacts with Zfp609 and the Integrator Complex to Regulate Cortical Neuron Migration , 2017, Neuron.

[33]  A. Tanay,et al.  Cell-cycle dynamics of chromosomal organisation at single-cell resolution , 2016, Nature.

[34]  Mark Gerstein,et al.  HiC-spector: a matrix library for spectral and reproducibility analysis of Hi-C contact maps , 2016, bioRxiv.

[35]  William T. Sherlock,et al.  A Functional Switch of NuRD Chromatin Remodeling Complex Subunits Regulates Mouse Cortical Development , 2016, Cell reports.

[36]  J. Rosenfeld,et al.  De Novo Mutations in CHD4, an ATP-Dependent Chromatin Remodeler Gene, Cause an Intellectual Disability Syndrome with Distinctive Dysmorphisms. , 2016, American journal of human genetics.

[37]  Tomas W. Fitzgerald,et al.  Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing , 2016, Nature Genetics.

[38]  Shane A. Heiney,et al.  Chromatin remodeling inactivates activity genes and regulates neural coding , 2016, Science.

[39]  Neva C. Durand,et al.  Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. , 2016, Cell systems.

[40]  Scott B. Dewell,et al.  Greater Than the Sum of Parts: Complexity of the Dynamic Epigenome. , 2016, Molecular cell.

[41]  Benjamin J. Raphael,et al.  Identification of hierarchical chromatin domains , 2016, Bioinform..

[42]  A. Raj,et al.  Enhancer Regulation of Transcriptional Bursting Parameters Revealed by Forced Chromatin Looping. , 2016, Molecular cell.

[43]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[44]  Jean-Philippe Vert,et al.  HiC-Pro: an optimized and flexible pipeline for Hi-C data processing , 2015, Genome Biology.

[45]  Christopher M. Vockley,et al.  Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum , 2015, Nature Neuroscience.

[46]  D. Schübeler Function and information content of DNA methylation , 2015, Nature.

[47]  B. Tjaden,et al.  De novo assembly of bacterial transcriptomes from RNA-seq data , 2015, Genome Biology.

[48]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[49]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[50]  Kali T. Witherspoon,et al.  Recurrent de novo mutations implicate novel genes underlying simplex autism risk , 2014, Nature Communications.

[51]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[52]  W. Regehr,et al.  Promoter Decommissioning by the NuRD Chromatin Remodeling Complex Triggers Synaptic Connectivity in the Mammalian Brain , 2014, Neuron.

[53]  M. Eremets,et al.  Ammonia as a case study for the spontaneous ionization of a simple hydrogen-bonded compound , 2014, Nature Communications.

[54]  M. Sung,et al.  Overlapping Chromatin Remodeling Systems Collaborate Genome-wide at Dynamic Chromatin Transitions , 2013, Nature Structural &Molecular Biology.

[55]  T. Owen-Hughes,et al.  Mechanisms and Functions of ATP-Dependent Chromatin-Remodeling Enzymes , 2013, Cell.

[56]  J. Shendure,et al.  Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1 , 2013, Nature Genetics.

[57]  Bradley P. Coe,et al.  Multiplex Targeted Sequencing Identifies Recurrently Mutated Genes in Autism Spectrum Disorders , 2012, Science.

[58]  Joaquín Dopazo,et al.  Qualimap: evaluating next-generation sequencing alignment data , 2012, Bioinform..

[59]  Wei Li,et al.  RSeQC: quality control of RNA-seq experiments , 2012, Bioinform..

[60]  Toshiro K. Ohsumi,et al.  Sequencing Chromosomal Abnormalities Reveals Neurodevelopmental Loci that Confer Risk across Diagnostic Boundaries , 2012, Cell.

[61]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[62]  Evan T. Geller,et al.  Patterns and rates of exonic de novo mutations in autism spectrum disorders , 2012, Nature.

[63]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[64]  Bradley P. Coe,et al.  Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations , 2012, Nature.

[65]  I. Ellis,et al.  Differential oestrogen receptor binding is associated with clinical outcome in breast cancer , 2011, Nature.

[66]  T. Casci,et al.  Evo–devo: Plastic flies , 2011, Nature Reviews Genetics.

[67]  A. Bonni,et al.  Transcriptional Regulation of Neuronal Polarity and Morphogenesis in the Mammalian Brain , 2011, Neuron.

[68]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[69]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[70]  Robert A. Edwards,et al.  Quality control and preprocessing of metagenomic datasets , 2011, Bioinform..

[71]  R. Young,et al.  Histone H3K27ac separates active from poised enhancers and predicts developmental state , 2010, Proceedings of the National Academy of Sciences.

[72]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[73]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[74]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[75]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[76]  Steven Hahn,et al.  Transcriptional regulation Meeting on Regulatory Mechanisms in Eukaryotic Transcription , 2008 .

[77]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[78]  E. Fama,et al.  Migration , 2007, Inward Looking.

[79]  Han G Brunner,et al.  Mutations in a new member of the chromodomain gene family cause CHARGE syndrome , 2004, Nature Genetics.

[80]  J. Seavitt,et al.  The chromatin remodeler Mi-2beta is required for CD4 expression and T cell development. , 2004, Immunity.

[81]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[82]  Weidong Wang,et al.  NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. , 1998, Molecular cell.

[83]  S. Schreiber,et al.  Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex , 1998, Nature.

[84]  D. Reinberg,et al.  The Dermatomyositis-Specific Autoantigen Mi2 Is a Component of a Complex Containing Histone Deacetylase and Nucleosome Remodeling Activities , 1998, Cell.

[85]  J. Altman,et al.  Development of the Cerebellar System: In Relation to Its Evolution, Structure, and Functions , 1996 .

[86]  et al.,et al.  Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.

[87]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[88]  J. Altman Development of the Cerebellar System , 1997 .