Electronic structure contributions to function in bioinorganic chemistry.

Many metalloenzymes exhibit distinctive spectral features that are now becoming well understood. These reflect active site electronic structures that can make significant contributions to catalysis. Copper proteins provide well-characterized examples in which the unusual electronic structures of their active sites contribute to rapid, long-range electron transfer reactivity, oxygen binding and activation, and the multielectron reduction of dioxygen to water.

[1]  J. Guss,et al.  Structure of oxidized poplar plastocyanin at 1.6 A resolution. , 1983, Journal of molecular biology.

[2]  H. Gray,et al.  Spectroscopic studies and a structural model for blue copper centers in proteins. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. Cole,et al.  Spectroscopic and chemical studies of the laccase trinuclear copper active site: geometric and electronic structure , 1990 .

[4]  K. Hodgson,et al.  Copper site of molluscan oxyhemocyanins. Structural evidence from x-ray absorption spectroscopy , 1981 .

[5]  Edward I. Solomon,et al.  X-ray absorption spectroscopic studies of the blue copper site: Metal and ligand K-edge studies to probe the origin of the EPR hyperfine splitting in plastocyanin , 1993 .

[6]  O. Farver,et al.  Circular dichroic spectrum of the laccase‐peroxide derivative , 1978, FEBS letters.

[7]  E. Solomon,et al.  The electronic structures of active sites in non-heme iron enzymes , 1992 .

[8]  W G Hol,et al.  Crystal structure of hexameric haemocyanin from Panulirus interruptus refined at 3.2 A resolution. , 1994, Journal of molecular biology.

[9]  K. Karlin,et al.  Vibrational, electronic, and resonance Raman spectral studies of [Cu2(YXL-O-)O2]+, a copper(II) peroxide model complex of oxyhemocyanin , 1987 .

[10]  J. Cole,et al.  Spectroscopic characterization of the peroxide intermediate in the reduction of dioxygen catalyzed by the multicopper oxidases , 1991 .

[11]  E. Solomon,et al.  EXAFS Studies of Binuclear Copper Site of Oxy-, Deoxy-, Metaquo-, Metfluoro-, and Metazidohemocyanin from Arthropods and Molluscs , 1984 .

[12]  Y. Moro-oka,et al.  .mu.-.eta.2:.eta.2-Peroxo binuclear copper complex, [Cu(HB(3,5-(Me2CH)2pz)3)]2(O2) , 1989 .

[13]  E. Solomon,et al.  Chemical and spectroscopic studies of the coupled binuclear copper site in type 2 depleted Rhus laccase: comparison to the hemocyanins and tyrosinase , 1987 .

[14]  Edward I. Solomon,et al.  An electronic structural comparison of copper-peroxide complexes of relevance to hemocyanin and tyrosinase active sites , 1991 .

[15]  C. EickmanN,et al.  オキシヘモシアニンの幾何構造と電子構造 : 二量体活性サイトおよびmet apo,半met,metとの分光学的および化学的相関 , 1979 .

[16]  E. Solomon,et al.  Substrate analogue binding to the coupled binuclear copper active site in tyrosinase , 1985 .

[17]  H. Schugar,et al.  Preparation and Characterization of [rac-5, 7, 7, 12, 14, 14, -Hexamethyl-1, 4, 8, 11-Tetraazocyclotetradecane]Copper(II) o-Mercaptobenzoate Hydrate, [Cu(tet b)(o-SC6H4CO2)].H2O, a Complex with a CuN4S (Mercaptide) Chromophore , 1979 .

[18]  A. Martell,et al.  Thermodynamics of oxygen binding in natural and synthetic dioxygen complexes , 1984 .

[19]  Roald Hoffmann,et al.  Orbital interactions in metal dimer complexes , 1975 .

[20]  D. Root,et al.  Spectroscopic studies of side-on peroxide-bridged binuclear copper(II) model complexes of relevance to oxyhemocyanin and oxytyrosinase , 1992 .

[21]  R. Witter,et al.  Advances in Enzymology and Related Subjects of Biochemistry. , 1955 .

[22]  Jon Zubieta,et al.  A Cu2-O2 Complex. Crystal Structure and Characterization of a Reversible Dioxygen Binding System , 1988 .

[23]  H. Gray,et al.  Magnetic susceptibility studies of laccase and oxyhemocyanin. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[24]  T. Spiro,et al.  Resonance raman study of mollusc and arthropod hemocyanins using ultraviolet excitation: copper environment and subunit inhomogeneity. , 1977, Journal of the American Chemical Society.

[25]  E. Solomon,et al.  Geometric and electronic structure of oxyhemocyanin: spectral and chemical correlations to met apo, half met, met, and dimer active sites. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Godden,et al.  The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. , 1991, Science.

[27]  E. Solomon,et al.  Competitive inhibitor binding to the binuclear copper active site in tyrosinase , 1981 .

[28]  T. Spiro,et al.  Structural studies of the hemocyanin active site. 2. Resonance Raman spectroscopy , 1980 .

[29]  L Avigliano,et al.  Refined crystal structure of ascorbate oxidase at 1.9 A resolution. , 1992, Journal of molecular biology.

[30]  M. Murata,et al.  X-ray crystal structure analysis of plastocyanin at 2.7 Å resolution , 1978, Nature.

[31]  James E. Roberts,et al.  Electron nuclear double resonance spectra of stellacyanin, a blue copper protein , 1980 .

[32]  A. Sykes Active-site properties of the blue copper proteins , 1991 .

[33]  K. Stevens,et al.  Paramagnetic Resonance of a Cu2+ Ion in a Tetrahedral Crystal Field , 1962 .

[34]  M. Allendorf,et al.  Low-temperature magnetic circular dichroism studies of native laccase: confirmation of a trinuclear copper active site , 1986 .

[35]  M. Newton,et al.  Quantum chemical probes of electron-transfer kinetics: the nature of donor-acceptor interactions , 1991 .

[36]  M. Allendorf,et al.  Low-temperature magnetic circular dichroism studies of native laccase: spectroscopic evidence for exogenous ligand bridging at a trinuclear copper active site. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[37]  K. Karlin,et al.  Spectroscopic and theoretical studies of an end-on peroxide-bridged coupled binuclear copper(II) model complex of relevance to the active sites in hemocyanin and tyrosinase , 1991 .

[38]  E. Solomon,et al.  Spectroscopic studies on plastocyanin single crystals: a detailed electronic structure determination of the blue copper active site , 1981 .

[39]  H. Ton-that,et al.  The crystal structure of the oxygenated form of Limulus polyphemus subunit II hemocyanin. , 1992 .

[40]  K. Karlin,et al.  Dioxygen-copper reactivity. Reversible binding of O2 and CO to a phenoxo-bridged dicopper(I) complex , 1987 .

[41]  Edward I. Solomon,et al.  Electronic structure and bonding of the blue copper site in plastocyanin , 1985 .

[42]  E T Adman,et al.  Copper protein structures. , 1991, Advances in protein chemistry.

[43]  A. Gewirth,et al.  Electronic structure of plastocyanin: excited state spectral features , 1988 .

[44]  R. Marcus,et al.  Electron transfers in chemistry and biology , 1985 .

[45]  K. Hodgson,et al.  Polarized x-ray absorption spectra of oriented plastocyanin single crystals. Investigation of methionine-copper coordination , 1982 .

[46]  D C Rees,et al.  Structural models for the metal centers in the nitrogenase molybdenum-iron protein. , 1992, Science.

[47]  B. Reinhammar An epr signal from the half-reduced type 3 copper pair in Rhus vernicifera laccase , 1981 .

[48]  G. Rotilio,et al.  Selective removal of type 2 copper from Rhus vernicifera laccase , 1976, FEBS letters.

[49]  E. Solomon,et al.  Chemical and spectroscopic studies of the binuclear copper active site of Neurospora tyrosinase: comparison to hemocyanins , 1980 .

[50]  K. Hodgson,et al.  Reactivity of the laccase trinuclear copper active site with dioxygen: an x-ray absorption edge study , 1990 .

[51]  E. Solomon,et al.  EPR studies of the "EPR-nondetectable" met derivative of hemocyanin: perturbations and displacement of the endogenous bridge in the coupled binuclear copper active site , 1984 .

[52]  J. P. Dahl,et al.  Understanding Molecular Properties , 1987 .

[53]  Edward I. Solomon,et al.  ELECTRONIC STRUCTURES OF ACTIVE SITES IN COPPER PROTEINS : CONTRIBUTIONS TO REACTIVITY , 1992 .

[54]  K. Karlin,et al.  Dioxygen−copper reactivity: generation, characterization, and reactivity of a hydroperoxo−dicopper(II) complex , 1988 .

[55]  T. B. Freedman,et al.  A resonance Raman study of the copper protein, hemocyanin. New evidence for the structure of the oxygen-binding site. , 1976, Journal of the American Chemical Society.

[56]  G L Romani,et al.  Letter: Susceptibility studies of laccase and oxyhemocyanin using an ultrasensitive magnetometer. Antiferromagnetic behavior of the type 3 copper in Rhus laccase. , 1976, Journal of the American Chemical Society.

[57]  D. McMillin,et al.  A mixed-metal derivative of laccase containing mercury(II) in the type 1 binding site , 1984 .

[58]  E. Solomon,et al.  Ultraviolet resonance Raman study of oxytyrosinase. Comparison with oxyhemocyanins , 1978 .

[59]  R. Malkin,et al.  The state and function of copper in biological systems. , 2006, Advances in enzymology and related areas of molecular biology.