Current State of Text Sentiment Analysis from Opinion to Emotion Mining

Sentiment analysis from text consists of extracting information about opinions, sentiments, and even emotions conveyed by writers towards topics of interest. It is often equated to opinion mining, but it should also encompass emotion mining. Opinion mining involves the use of natural language processing and machine learning to determine the attitude of a writer towards a subject. Emotion mining is also using similar technologies but is concerned with detecting and classifying writers emotions toward events or topics. Textual emotion-mining methods have various applications, including gaining information about customer satisfaction, helping in selecting teaching materials in e-learning, recommending products based on users emotions, and even predicting mental-health disorders. In surveys on sentiment analysis, which are often old or incomplete, the strong link between opinion mining and emotion mining is understated. This motivates the need for a different and new perspective on the literature on sentiment analysis, with a focus on emotion mining. We present the state-of-the-art methods and propose the following contributions: (1) a taxonomy of sentiment analysis; (2) a survey on polarity classification methods and resources, especially those related to emotion mining; (3) a complete survey on emotion theories and emotion-mining research; and (4) some useful resources, including lexicons and datasets.

[1]  Rosa M. Carro,et al.  Sentiment analysis in Facebook and its application to e-learning , 2014, Comput. Hum. Behav..

[2]  Michael Gamon,et al.  Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis , 2004, COLING.

[3]  Bing Liu,et al.  Mining Aspect-Specific Opinion using a Holistic Lifelong Topic Model , 2016, WWW.

[4]  Chu-Ren Huang,et al.  Emotion Cause Events: Corpus Construction and Analysis , 2010, LREC.

[5]  Elke A. Rundensteiner,et al.  Using Hashtags as Labels for Supervised Learning of Emotions in Twitter Messages , 2014 .

[6]  K. Scherer,et al.  Evidence for universality and cultural variation of differential emotion response patterning. , 1994, Journal of personality and social psychology.

[7]  Cecilia Ovesdotter Alm,et al.  Affect in Text and Speech , 2009 .

[8]  B. Parkinson Everyday conceptions of emotion: An introduction to the psychology, anthropology, and linguistics of emotion , 1998 .

[9]  Grace Hui Yang,et al.  Knowledge Transfer and Opinion Detection in the TREC 2006 Blog Track , 2006, TREC.

[10]  Seong-Bae Park,et al.  Construction of Vietnamese SentiWordNet by using Vietnamese Dictionary , 2014, ArXiv.

[11]  Saif Mohammad,et al.  NRC-Canada-2014: Recent Improvements in the Sentiment Analysis of Tweets , 2014, SemEval@COLING.

[12]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[13]  James A. Russell,et al.  Everyday Conceptions of Emotion: An Introduction to the Psychology, Anthropology and Linguistics of Emotion: Proceedings of the NATO Advanced Research Workshop on 'Everyday Conceptions of Emotion', Almagro, Spain, May 3-8, 1994 , 1995 .

[14]  Claire Cardie,et al.  OpinionFinder: A System for Subjectivity Analysis , 2005, HLT.

[15]  Wei-Hao Lin,et al.  Which Side are You on? Identifying Perspectives at the Document and Sentence Levels , 2006, CoNLL.

[16]  Jeonghee Yi,et al.  Sentiment analysis: capturing favorability using natural language processing , 2003, K-CAP '03.

[17]  Michael Gamon,et al.  Customizing Sentiment Classifiers to New Domains: a Case Study , 2019 .

[18]  Masaru Kitsuregawa,et al.  Building Lexicon for Sentiment Analysis from Massive Collection of HTML Documents , 2007, EMNLP.

[19]  Syin Chan,et al.  Effectiveness of Simple Linguistic Processing in Automatic Sentiment Classification of Product Reviews , 2004 .

[20]  Qiang Yang,et al.  Cross-domain sentiment classification via spectral feature alignment , 2010, WWW '10.

[21]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[22]  Andrea Kleinsmith,et al.  Affective Body Expression Perception and Recognition: A Survey , 2013, IEEE Transactions on Affective Computing.

[23]  Sivaji Bandyopadhyay,et al.  SentiWordNet for Indian Languages , 2010 .

[24]  M. de Rijke,et al.  UvA-DARE ( Digital Academic Repository ) Using WordNet to measure semantic orientations of adjectives , 2004 .

[25]  Wenyin Liu,et al.  Affective topic model for social emotion detection , 2014, Neural Networks.

[26]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[27]  Hong Yu,et al.  Towards Answering Opinion Questions: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences , 2003, EMNLP.

[28]  Mitsuru Ishizuka,et al.  Compositionality Principle in Recognition of Fine-Grained Emotions from Text , 2009, ICWSM.

[29]  Navneet Kaur,et al.  Opinion mining and sentiment analysis , 2016, 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom).

[30]  Carlo Strapparava,et al.  Learning to identify emotions in text , 2008, SAC '08.

[31]  Marshall S. Smith,et al.  The general inquirer: A computer approach to content analysis. , 1967 .

[32]  Yi-Hsuan Yang,et al.  Machine Recognition of Music Emotion: A Review , 2012, TIST.

[33]  François-Régis Chaumartin,et al.  UPAR7: A knowledge-based system for headline sentiment tagging , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[34]  P. Shaver,et al.  Emotion knowledge: further exploration of a prototype approach. , 1987, Journal of personality and social psychology.

[35]  Kang Liu,et al.  Book Review: Sentiment Analysis: Mining Opinions, Sentiments, and Emotions by Bing Liu , 2015, CL.

[36]  Lei Zhang,et al.  Sentiment Analysis and Opinion Mining , 2017, Encyclopedia of Machine Learning and Data Mining.

[37]  ChengXiang Zhai,et al.  Instance Weighting for Domain Adaptation in NLP , 2007, ACL.

[38]  Vincent Ng,et al.  Examining the Role of Linguistic Knowledge Sources in the Automatic Identification and Classification of Reviews , 2006, ACL.

[39]  C. W. Hughes Emotion: Theory, Research and Experience , 1982 .

[40]  Takashi Inui,et al.  Extracting Semantic Orientations of Phrases from Dictionary , 2007, NAACL.

[41]  G. A. Mishne,et al.  Expiriments with mood classification in blog posts , 2005, SIGIR 2005.

[42]  Robert E. Schapire,et al.  A Brief Introduction to Boosting , 1999, IJCAI.

[43]  John B. Lowe,et al.  The Berkeley FrameNet Project , 1998, ACL.

[44]  Saif Mohammad,et al.  #Emotional Tweets , 2012, *SEMEVAL.

[45]  P. Ekman An argument for basic emotions , 1992 .

[46]  Bing Liu,et al.  Opinion observer: analyzing and comparing opinions on the Web , 2005, WWW '05.

[47]  Duyu Tang,et al.  Sentiment-Specific Representation Learning for Document-Level Sentiment Analysis , 2015, WSDM.

[48]  Richard Wicentowski,et al.  SWAT-MP:The SemEval-2007 Systems for Task 5 and Task 14 , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[49]  Bing Liu,et al.  Opinion spam and analysis , 2008, WSDM '08.

[50]  Chris H. Q. Ding,et al.  Knowledge transformation for cross-domain sentiment classification , 2009, SIGIR.

[51]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[52]  Ming Zhou,et al.  Coooolll: A Deep Learning System for Twitter Sentiment Classification , 2014, *SEMEVAL.

[53]  Cícero Nogueira dos Santos,et al.  Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts , 2014, COLING.

[54]  Peter D. Turney,et al.  Emotions Evoked by Common Words and Phrases: Using Mechanical Turk to Create an Emotion Lexicon , 2010, HLT-NAACL 2010.

[55]  Tru H. Cao,et al.  A High-Order Hidden Markov Model for Emotion Detection from Textual Data , 2012, PKAW.

[56]  Plaban Kumar Bhowmick Reader Perspective Emotion Analysis in Text through Ensemble based Multi-Label Classification Framework , 2009, Comput. Inf. Sci..

[57]  James A. Russell,et al.  Everyday Conceptions of Emotion , 1995 .

[58]  Prem Melville,et al.  Sentiment analysis of blogs by combining lexical knowledge with text classification , 2009, KDD.

[59]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[60]  Masaru Kitsuregawa,et al.  Automatic Construction of Polarity-Tagged Corpus from HTML Documents , 2006, ACL.

[61]  Mitsuru Ishizuka,et al.  Textual Affect Sensing for Sociable and Expressive Online Communication , 2007, ACII.

[62]  Sanda M. Harabagiu,et al.  EmpaTweet: Annotating and Detecting Emotions on Twitter , 2012, LREC.

[63]  Songbo Tan,et al.  A novel scheme for domain-transfer problem in the context of sentiment analysis , 2007, CIKM '07.

[64]  Carlo Strapparava,et al.  WordNet Affect: an Affective Extension of WordNet , 2004, LREC.

[65]  Eric Horvitz,et al.  Predicting Depression via Social Media , 2013, ICWSM.

[66]  Andrea Esuli,et al.  Determining the semantic orientation of terms through gloss classification , 2005, CIKM '05.

[67]  Saif Mohammad,et al.  Sentiment Analysis of Short Informal Texts , 2014, J. Artif. Intell. Res..

[68]  Fakhri Karray,et al.  Survey on speech emotion recognition: Features, classification schemes, and databases , 2011, Pattern Recognit..

[69]  Piotr Synak,et al.  Multi-Label Classification of Emotions in Music , 2006, Intelligent Information Systems.

[70]  Carlo Strapparava,et al.  SemEval-2007 Task 14: Affective Text , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[71]  Rudy Prabowo,et al.  Sentiment analysis: A combined approach , 2009, J. Informetrics.

[72]  P. Ekman,et al.  Emotion in the Human Face: Guidelines for Research and an Integration of Findings , 1972 .

[73]  Laura A. Granka,et al.  Let Me Count the Ways , 2005 .

[74]  Arjun Mukherjee,et al.  Aspect Extraction through Semi-Supervised Modeling , 2012, ACL.

[75]  John Blitzer,et al.  Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification , 2007, ACL.

[76]  Amit P. Sheth,et al.  Harnessing Twitter "Big Data" for Automatic Emotion Identification , 2012, 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing.

[77]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[78]  E. Fox Emotion Science: Cognitive and Neuroscientific Approaches to Understanding Human Emotions , 2008 .

[79]  Aidan Finn,et al.  Learning to classify documents according to genre: Special Topic Section on Computational Analysis of Style , 2006 .

[80]  David W. Park,et al.  Interpersonal Effects in Computer-Mediated Interaction , 1994 .

[81]  Yihan Deng,et al.  Sentiment analysis in medical settings: New opportunities and challenges , 2015, Artif. Intell. Medicine.

[82]  Shlomo Argamon,et al.  Using appraisal groups for sentiment analysis , 2005, CIKM '05.

[83]  Andrea Esuli,et al.  Determining Term Subjectivity and Term Orientation for Opinion Mining , 2006, EACL.

[84]  Bettina Berendt,et al.  Who is more positive in private? Analyzing sentiment differences across privacy levels and demographic factors in Facebook chats and posts , 2015, 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[85]  Xiuyi Jia,et al.  Sentiment Analysis on Microblogging by Integrating Text and Image Features , 2015, PAKDD.

[86]  Michael Gamon,et al.  Automatic Identification of Sentiment Vocabulary: Exploiting Low Association with Known Sentiment Terms , 2005, ACL 2005.

[87]  V. Y. Kulkarni,et al.  TexEmo: Conveying Emotion from Text- The Study , 2014 .

[88]  Gilad Mishne,et al.  Capturing Global Mood Levels using Blog Posts , 2006, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.

[89]  Johan Bollen,et al.  Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena , 2009, ICWSM.

[90]  Ming Zhou,et al.  Learning Sentiment-Specific Word Embedding for Twitter Sentiment Classification , 2014, ACL.

[91]  Likun Qiu,et al.  SELC: a self-supervised model for sentiment classification , 2009, CIKM.

[92]  Hua Xu,et al.  Emotion Cause Detection for Chinese Micro-Blogs Based on ECOCC Model , 2015, PAKDD.

[93]  T. Danisman,et al.  Feeler: Emotion Classification of Text Using Vector Space Model , 2008 .

[94]  Yongtae Park,et al.  Review-based measurement of customer satisfaction in mobile service: Sentiment analysis and VIKOR approach , 2014, Expert Syst. Appl..

[95]  Diego Reforgiato Recupero,et al.  Sentiment Analysis: Adjectives and Adverbs are Better than Adjectives Alone , 2007, ICWSM.

[96]  Shiv Naresh Shivhare,et al.  Emotion Detection from Text , 2012, ArXiv.

[97]  Bo Pang,et al.  Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales , 2005, ACL.

[98]  Caroline Voeffray Emotion-sensitive Human-Computer Interaction ( HCI ) : State of the art-Seminar paper ∗ , 2012 .

[99]  Jeffrey T. Hancock,et al.  Expressing emotion in text-based communication , 2007, CHI.

[100]  Janyce Wiebe,et al.  Effects of Adjective Orientation and Gradability on Sentence Subjectivity , 2000, COLING.

[101]  Saif Mohammad,et al.  NRC-Canada-2014: Detecting Aspects and Sentiment in Customer Reviews , 2014, *SEMEVAL.

[102]  Nigel Collier,et al.  Sentiment Analysis using Support Vector Machines with Diverse Information Sources , 2004, EMNLP.

[103]  Giuseppe Di Fabbrizio,et al.  EMOTION DETECTION IN EMAIL CUSTOMER CARE , 2013, Comput. Intell..

[104]  Bo Pang,et al.  A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts , 2004, ACL.

[105]  Aidan Finn,et al.  Learning to classify documents according to genre , 2006, J. Assoc. Inf. Sci. Technol..

[106]  James W. Pennebaker,et al.  Linguistic Inquiry and Word Count (LIWC2007) , 2007 .

[107]  Sunghwan Mac Kim,et al.  Evaluation of Unsupervised Emotion Models to Textual Affect Recognition , 2010, HLT-NAACL 2010.

[108]  Saif Mohammad,et al.  NRC-Canada: Building the State-of-the-Art in Sentiment Analysis of Tweets , 2013, *SEMEVAL.

[109]  Von-Wun Soo,et al.  Towards Text-based Emotion Detection A Survey and Possible Improvements , 2009, 2009 International Conference on Information Management and Engineering.

[110]  Hua Xu,et al.  Text-based emotion classification using emotion cause extraction , 2014, Expert Syst. Appl..

[111]  Alice H. Oh,et al.  Aspect and sentiment unification model for online review analysis , 2011, WSDM '11.

[112]  Sean Murphy,et al.  Putting Feelings into Words: Cross-Linguistic Markers of the Referential Process , 2015, CLPsych@HLT-NAACL.

[113]  Philip J. Stone,et al.  Extracting Information. (Book Reviews: The General Inquirer. A Computer Approach to Content Analysis) , 1967 .

[114]  Huan Liu,et al.  Unsupervised sentiment analysis with emotional signals , 2013, WWW.

[115]  Walter Daelemans,et al.  Fine-Grained Emotion Detection in Suicide Notes: A Thresholding Approach to Multi-Label Classification , 2012, Biomedical informatics insights.

[116]  Rada Mihalcea,et al.  Towards multimodal sentiment analysis: harvesting opinions from the web , 2011, ICMI '11.

[117]  Sabine Bergler,et al.  Mining WordNet for a Fuzzy Sentiment: Sentiment Tag Extraction from WordNet Glosses , 2006, EACL.

[118]  Wenyin Liu,et al.  Towards building a social emotion detection system for online news , 2014, Future Gener. Comput. Syst..

[119]  Janyce Wiebe,et al.  Learning Subjective Language , 2004, CL.

[120]  Zhigang Deng,et al.  Analysis of emotion recognition using facial expressions, speech and multimodal information , 2004, ICMI '04.

[121]  Guodong Zhou,et al.  Active Learning for Cross-domain Sentiment Classification , 2013, IJCAI.

[122]  H. Lövheim A new three-dimensional model for emotions and monoamine neurotransmitters. , 2012, Medical hypotheses.

[123]  Luo Si,et al.  Knowledge Transfer and Opinion Detection in the TREC2006 Blog Track , 2006 .

[124]  J. Pennebaker Writing About Emotional Experiences as a Therapeutic Process , 1997 .

[125]  Vasileios Hatzivassiloglou,et al.  Predicting the Semantic Orientation of Adjectives , 1997, ACL.

[126]  Yulan He,et al.  Joint sentiment/topic model for sentiment analysis , 2009, CIKM.

[127]  David M. Pennock,et al.  Mining the peanut gallery: opinion extraction and semantic classification of product reviews , 2003, WWW '03.

[128]  Zhihong Zeng,et al.  A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[129]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[130]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[131]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[132]  Cecilia Ovesdotter Alm,et al.  Emotions from Text: Machine Learning for Text-based Emotion Prediction , 2005, HLT.

[133]  Cecilia Ovesdotter Alm,et al.  Emotional Sequencing and Development in Fairy Tales , 2005, ACII.

[134]  Paolo Rosso,et al.  On the impact of emotions on author profiling , 2016, Inf. Process. Manag..

[135]  Sidney K. D'Mello,et al.  A Review and Meta-Analysis of Multimodal Affect Detection Systems , 2015, ACM Comput. Surv..