Decoherence versus entanglement in coined quantum walks

Quantum versions of random walks on the line and cycle show a quadratic improvement in their spreading rate and mixing times respectively. The addition of decoherence to the quantum walk produces a more uniform distribution on the line, and even faster mixing on the cycle by removing the need for time-averaging to obtain a uniform distribution. We calculate numerically the entanglement between the coin and the position of the quantum walker and show that the optimal decoherence rates are such that all the entanglement is just removed by the time the final measurement is made.

[1]  Peter C. Richter Almost uniform sampling via quantum walks , 2006, quant-ph/0606202.

[2]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[3]  Todd A. Brun,et al.  Quantum walks with infinite hitting times , 2006 .

[4]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[5]  Viv Kendon,et al.  Entanglement in coined quantum walks on regular graphs , 2005 .

[6]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[7]  Barry C. Sanders,et al.  Quantum quincunx in cavity quantum electrodynamics , 2003 .

[8]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[9]  W. Dur,et al.  Quantum walks in optical lattices , 2002, quant-ph/0207137.

[10]  Viv Kendon,et al.  Decoherence can be useful in quantum walks , 2002, quant-ph/0209005.

[11]  R. Laflamme,et al.  Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor , 2005, quant-ph/0507267.

[12]  B Kraus,et al.  Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. , 2004, Physical review letters.

[13]  R. Renner,et al.  Information-theoretic security proof for quantum-key-distribution protocols , 2005, quant-ph/0502064.

[14]  K. Birgitta Whaley,et al.  Quantum random-walk search algorithm , 2002, quant-ph/0210064.

[15]  Dirk Bouwmeester,et al.  Optical Galton board , 1999 .

[16]  Andris Ambainis Quantum Walk Algorithm for Element Distinctness , 2004, FOCS.

[17]  Eric Bach,et al.  One-dimensional quantum walks with absorbing boundaries , 2004, J. Comput. Syst. Sci..

[18]  Norio Konno,et al.  Quantum Random Walks in One Dimension , 2002, Quantum Inf. Process..

[19]  R. Renner,et al.  An information-theoretic security proof for QKD protocols , 2005, quant-ph/0502064.

[20]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[21]  P. Knight,et al.  Quantum walk on the line as an interference phenomenon , 2003, quant-ph/0304201.

[22]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[23]  Barry C. Sanders,et al.  Complementarity and quantum walks , 2005 .

[24]  Yong Ho Jung,et al.  The influence of quantum effects on inelastic ion–ion collisional excitations in dense, high-temperature plasmas , 2005 .

[25]  Barry C. Sanders,et al.  Quantum walks in higher dimensions , 2002 .

[26]  Peter C. Richter Quantum speedup of classical mixing processes , 2006, quant-ph/0609204.

[27]  Todd A. Brun,et al.  Quantum walks on quotient graphs , 2007 .

[28]  G. J. Milburn,et al.  Implementing the quantum random walk , 2002 .

[29]  Andris Ambainis,et al.  Quantum random walks with decoherent coins , 2003 .

[30]  Will Flanagan,et al.  Controlling discrete quantum walks: coins and initial states , 2003 .

[31]  K. Życzkowski On the volume of the set of mixed entangled states II , 1999, quant-ph/9902050.