Finding the Neural Net: Deep-learning Idiom Type Identification from Distributional Vectors

The present work aims at automatically classifying Italian idiomatic and non-idiomatic phrases with a neural network model under constrains of data scarcity. Results are discussed in comparison with an existing unsupervised model devised for idiom type detection and a similar supervised classifier previously trained to detect metaphorical bigrams. The experiments suggest that the distributional context of a given phrase is sufficient to carry out idiom type identification to a satisfactory degree, with an increase in performance when input phrases are filtered according to human-elicited idiomaticity ratings collected for the same expressions. Crucially, employing concatenations of single word vectors rather than whole-phrase vectors as training input results in the worst performance for our models, differently from what was previously registered in metaphor detection tasks.

[1]  D. Barr,et al.  Metaphor in Idiom Comprehension , 1997 .

[2]  Stergios Chatzikyriakidis,et al.  “Deep” Learning : Detecting Metaphoricity in Adjective-Noun Pairs , 2017 .

[3]  Kenneth Ward Church,et al.  Word Association Norms, Mutual Information, and Lexicography , 1989, ACL.

[4]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[5]  Dilin Liu,et al.  The Most Frequently Used Spoken American English Idioms: A Corpus Analysis and Its Implications. , 2003 .

[6]  Cristina Cacciari,et al.  Processing multiword idiomatic strings: Many words in one? , 2014 .

[7]  Alessandro Lenci,et al.  Distributional Models of Word Meaning , 2018 .

[8]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[9]  Jason Eisner,et al.  Lexical Semantics , 2020, The Handbook of English Linguistics.

[10]  Afsaneh Fazly,et al.  Unsupervised Type and Token Identification of Idiomatic Expressions , 2009, CL.

[11]  A. Jacobs,et al.  Looking at the brains behind figurative language—A quantitative meta-analysis of neuroimaging studies on metaphor, idiom, and irony processing , 2012, Neuropsychologia.

[12]  Carlos Ramisch,et al.  Predicting the Compositionality of Nominal Compounds: Giving Word Embeddings a Hard Time , 2016, ACL.

[13]  Stephen Clark,et al.  RELPRON: A Relative Clause Evaluation Data Set for Compositional Distributional Semantics , 2016, CL.

[14]  Enrico Torre The emergent patterns of Italian idioms:a dynamic-systems approach , 2014 .

[15]  Cristina Cacciari,et al.  Semantic productivity and idiom comprehension. , 1994 .

[16]  Antoine Doucet,et al.  Neural Networks for Multi-Word Expression Detection , 2017, MWE@EACL.

[17]  Karel Jezek,et al.  Determining Compositionality of Expresssions Using Various Word Space Models and Methods , 2013, CVSM@ACL.

[18]  Ludovic Tanguy,et al.  Authorship Attribution: Using Rich Linguistic Features when Training Data is Scarce , 2012, CLEF.

[19]  Sabine Schulte im Walde,et al.  Improving Verb Metaphor Detection by Propagating Abstractness to Words, Phrases and Individual Senses , 2017 .

[20]  Gerard J. Steen,et al.  A method for linguistic metaphor identification : from MIP to MIPVU , 2010 .

[21]  Ron Artstein Inter-Coder Agreement for Computational Linguistics , 2008 .

[22]  Geoffrey Zweig,et al.  Linguistic Regularities in Continuous Space Word Representations , 2013, NAACL.

[23]  Afsaneh Fazly,et al.  A distributional account of the semantics of multiword expressions , 2008 .

[24]  Omer Levy,et al.  Improving Distributional Similarity with Lessons Learned from Word Embeddings , 2015, TACL.

[25]  Stefanie Wulff,et al.  Rethinking Idiomaticity: A Usage-based Approach , 2009 .

[26]  Georgiana Dinu,et al.  Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors , 2014, ACL.

[27]  Jason Weston,et al.  A unified architecture for natural language processing: deep neural networks with multitask learning , 2008, ICML '08.

[28]  G. Frege Über Sinn und Bedeutung , 1892 .

[29]  Matthew S. McGlone,et al.  Conceptual Metaphors and Figurative Language Interpretation: Food for Thought? , 1996 .

[30]  Mirella Lapata,et al.  A Comparison of Vector-based Representations for Semantic Composition , 2012, EMNLP.

[31]  Klaus Krippendorff,et al.  Content Analysis: An Introduction to Its Methodology , 1980 .

[32]  Silvia Bernardini,et al.  The WaCky wide web: a collection of very large linguistically processed web-crawled corpora , 2009, Lang. Resour. Evaluation.

[33]  Ekaterina Shutova,et al.  Grasping the Finer Point: A Supervised Similarity Network for Metaphor Detection , 2017, EMNLP.

[34]  D. Titone,et al.  Time-dependent effects of decomposability, familiarity and literal plausibility on idiom priming: A cross-modal priming investigation , 2014 .

[35]  Yan Liu,et al.  Not Enough Data?: Joint Inferring Multiple Diffusion Networks via Network Generation Priors , 2017, WSDM.

[36]  R. Harald Baayen,et al.  Understanding Idiomatic Variation , 2017, MWE@EACL.

[37]  Timothy Baldwin,et al.  Multiword Expressions: A Pain in the Neck for NLP , 2002, CICLing.

[38]  Alessandro Lenci,et al.  Determining the Compositionality of Noun-Adjective Pairs with Lexical Variants and Distributional Semantics , 2016, CLiC-it/EVALITA.

[39]  S. Glucksberg,et al.  Property attribution in metaphor comprehension , 1997 .

[40]  G. Lakoff,et al.  Metaphors We Live by , 1982 .

[41]  I. Sag,et al.  Idioms , 2015 .

[42]  Alessandro Lenci,et al.  Lexical Variability and Compositionality: Investigating Idiomaticity with Distributional Semantic Models , 2016, MWE@ACL.

[43]  Dekang Lin,et al.  Automatic Identification of Non-compositional Phrases , 1999, ACL.

[44]  Alessandro Lenci,et al.  Distributional semantics in linguistic and cognitive research , 2008 .

[45]  Costanza Papagno,et al.  Neuropsychological and Neurophysiological Correlates of Idiom Understanding: How Many Hemispheres Are Involved? , 2012 .

[46]  R. Gibbs The Poetics of Mind: Figurative Thought, Language, and Understanding , 1994 .

[47]  Ronan Collobert,et al.  Phrase Representations for Multiword Expressions , 2016, MWE@ACL.

[48]  Mirella Lapata,et al.  Composition in Distributional Models of Semantics , 2010, Cogn. Sci..

[49]  Iryna Gurevych,et al.  Token-Level Metaphor Detection using Neural Networks , 2016 .

[50]  Patrick Pantel,et al.  From Frequency to Meaning: Vector Space Models of Semantics , 2010, J. Artif. Intell. Res..

[51]  Dedre Gentner,et al.  Structure-Mapping: A Theoretical Framework for Analogy , 1983, Cogn. Sci..

[52]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[53]  Carlo Lapucci Dizionario dei modi di dire della lingua italiana , 1979 .