The first metal-free water-soluble cryptophane-111.

Cryptophane-111 is one of the best candidates for (129)Xe MRI-based applications. Herein, we report the first metal-free and water-soluble cryptophane-111 core which involves an efficient and unusual post-synthetic sulfonation procedure.

[1]  J. Dognon,et al.  Design and synthesis of new cryptophanes with intermediate cavity sizes. , 2011, Organic letters.

[2]  Goulven Merer,et al.  Scalable Synthesis of Cyclotriphenolene , 2011 .

[3]  A. Romieu,et al.  Water-solubilisation and bio-conjugation of a red-emitting BODIPY marker. , 2011, Organic & biomolecular chemistry.

[4]  I. Dmochowski,et al.  Crystallographic observation of 'induced fit' in a cryptophane host–guest model system , 2010, Nature communications.

[5]  Patrick Berthault,et al.  Effect of pH and counterions on the encapsulation properties of xenon in water-soluble cryptophanes. , 2010, Chemistry.

[6]  J. Dutasta,et al.  A water-soluble Xe@cryptophane-111 complex exhibits very high thermodynamic stability and a peculiar (129)Xe NMR chemical shift. , 2010, Journal of the American Chemical Society.

[7]  A. Romieu,et al.  Water solubilization of xanthene dyes by post-synthetic sulfonation in organic media , 2010 .

[8]  V. Bajaj,et al.  A xenon-based molecular sensor assembled on an MS2 viral capsid scaffold. , 2010, Journal of the American Chemical Society.

[9]  J. Cintrat,et al.  Scalable synthesis of cryptophane-1.1.1 and its functionalization. , 2010, Organic letters.

[10]  H. Desvaux,et al.  Biosensing using laser-polarized xenon NMR/MRI , 2009 .

[11]  L. Mitschang,et al.  A xenon-129 biosensor for monitoring MHC-peptide interactions. , 2009, Angewandte Chemie.

[12]  A. Romieu,et al.  Water-soluble BODIPY derivatives. , 2009, Organic letters.

[13]  T. Troxler,et al.  Substituent effects on xenon binding affinity and solution behavior of water-soluble cryptophanes. , 2009, Journal of the American Chemical Society.

[14]  D. Christianson,et al.  Cryptophane xenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase. , 2009, Journal of the American Chemical Society.

[15]  H. Desvaux,et al.  Sensitivity and multiplexing capabilities of MRI based on polarized 129Xe biosensors. , 2008, Journal of the American Chemical Society.

[16]  Y. Ko,et al.  Water soluble cucurbit[6]uril derivative as a potential Xe carrier for 129Xe NMR-based biosensors. , 2008, Chemical communications.

[17]  A. Pines,et al.  Temperature-controlled molecular depolarization gates in nuclear magnetic resonance. , 2008, Angewandte Chemie.

[18]  J. Platts,et al.  Insights into DNA binding of ruthenium arene complexes: role of hydrogen bonding and pi stacking. , 2008, Inorganic chemistry.

[19]  D. S. Pandey,et al.  DNA binding and topoisomerase II inhibitory activity of water-soluble ruthenium(II) and rhodium(III) complexes. , 2007, Inorganic chemistry.

[20]  I. Dmochowski,et al.  Thermodynamics of Xenon Binding to Cryptophane in Water and Human Plasma [J. Am. Chem. Soc. 2007, 129, 9262−9263]. , 2007 .

[21]  J. Dutasta,et al.  A cryptophane core optimized for xenon encapsulation. , 2007, Journal of the American Chemical Society.

[22]  R. Eckenhoff,et al.  Thermodynamics of xenon binding to cryptophane in water and human plasma. , 2007, Journal of the American Chemical Society.

[23]  G Allan Johnson,et al.  Imaging alveolar–capillary gas transfer using hyperpolarized 129Xe MRI , 2006, Proceedings of the National Academy of Sciences.

[24]  Christian Hilty,et al.  Molecular Imaging Using a Targeted Magnetic Resonance Hyperpolarized Biosensor , 2006, Science.

[25]  A. Pines,et al.  Xenon biosensor amplification via dendrimer-cage supramolecular constructs. , 2006, Journal of the American Chemical Society.

[26]  L. Dubois,et al.  Water soluble cryptophanes showing unprecedented affinity for xenon: candidates as NMR-based biosensors. , 2006, Journal of the American Chemical Society.

[27]  A. Pines,et al.  Optimization of Xenon Biosensors for Detection of Protein Interactions , 2005, Chembiochem : a European journal of chemical biology.

[28]  A. Pines,et al.  Spectrally resolved magnetic resonance imaging of a xenon biosensor. , 2005, Angewandte Chemie.

[29]  L. Dubois,et al.  NMR study of optically active monosubstituted cryptophanes and their interaction with xenon , 2004 .

[30]  P. Schultz,et al.  Development of a functionalized xenon biosensor. , 2004, Journal of the American Chemical Society.

[31]  A. Cherubini,et al.  Hyperpolarised xenon in biology , 2003 .

[32]  A. Pines,et al.  Functionalized xenon as a biosensor , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[33]  W. Happer,et al.  Biological magnetic resonance imaging using laser-polarized 129Xe , 1994, Nature.

[34]  A. Constantinesco,et al.  Towards thrombosis-targeted zeolite nanoparticles for laser-polarized 129Xe MRI , 2009 .

[35]  J. Dutasta,et al.  Cryptophanes and their complexes--present and future. , 2009, Chemical reviews.

[36]  Dominique Brossard,et al.  Postsynthetic Derivatization of Fluorophores with α-Sulfo-β-alanine Dipeptide Linker. Application to the Preparation of Water-Soluble Cyanine and Rhodamine Dyes , 2008 .

[37]  D. Le-Nguyen,et al.  PyBOP®: A new peptide coupling reagent devoid of toxic by-product , 1990 .