Click here Terms of use : Click here On computably locally compact Hausdorff spaces

Locally compact Hausdorff spaces generalise Euclidean spaces and metric spaces from ‘metric’ to ‘topology’. But does the effectivity on the latter (Brattka and Weihrauch 1999; Weihrauch 2000) still hold for the former? In fact, some results will be totally changed. This paper provides a complete investigation of a specific kind of space – computably locally compact Hausdorff spaces. First we characterise this type of effective space, and then study computability on closed and compact subsets of them. We use the framework of the representation approach, TTE, where continuity and computability on finite and infinite sequences of symbols are defined canonically and transferred to abstract sets by means of notations and representations.

[1]  Klaus Weihrauch,et al.  Computability on Computable Metric Spaces , 1993, Theor. Comput. Sci..

[2]  Martin Ziegler,et al.  Computable operators on regular sets , 2004, Math. Log. Q..

[3]  Pieter Collins,et al.  Continuity and computability of reachable sets , 2005, Theor. Comput. Sci..

[4]  Mariko Yasugi,et al.  Effective Properties of Sets and Functions in Metric Spaces with Computability Structure , 1999, Theor. Comput. Sci..

[5]  Klaus Weihrauch,et al.  A unified approach to constructive and recursive analysis , 1984 .

[6]  Klaus Weihrauch,et al.  A Computable Version of Dini's Theorem for Topological Spaces , 2005, CCA.

[7]  Vasco Brattka,et al.  Recursive quasi-metric spaces , 2003, Theor. Comput. Sci..

[8]  Jürgen Hauck,et al.  Berechenbare Reelle Funktionen , 1973 .

[9]  Klaus Weihrauch,et al.  On Computable Metrization , 2007, Electron. Notes Theor. Comput. Sci..

[10]  Qing Zhou,et al.  Computable Real-Valued Functions on Recursive Open and Closed Subsets of Euclidean Space , 1996, Math. Log. Q..

[11]  Viggo Stoltenberg-Hansen,et al.  Concrete Models of Computation for Topological Algebras , 1999, Theor. Comput. Sci..

[12]  Andrzej Grzegorczyk On the definition of computable functionals , 1955 .

[13]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[14]  Klaus Weihrauch,et al.  Computability theory of generalized functions , 2003, JACM.

[15]  Martin Ziegler,et al.  Computability on Regular Subsets of Euclidean Space , 2002, Math. Log. Q..

[16]  Vasco Brattka,et al.  Computability on subsets of metric spaces , 2003, Theor. Comput. Sci..

[17]  Klaus Weihrauch,et al.  Computability on Subsets of Euclidean Space I: Closed and Compact Subsets , 1999, Theor. Comput. Sci..

[18]  Dana S. Scott,et al.  Outline of a Mathematical Theory of Computation , 1970 .

[19]  V. Brattka,et al.  Continuity and Computability of Relations , 1994 .

[20]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[21]  B. Kushner,et al.  Lectures on Constructive Mathematical Analysis , 1984 .