Multiscale conformal pattern transfer

We demonstrate a method for seamless transfer from a parent flat substrate of basically any lithographic top-down or bottom-up pattern onto essentially any kind of surface. The nano- or microscale patterns, spanning macroscopic surface areas, can be transferred with high conformity onto a large variety of surfaces when such patterns are produced on a thin carbon film, grown on top of a sacrificial layer. The latter allows lifting the patterns from the flat parent substrate onto a water-air interface to be picked up by the host surface of choice. We illustrate the power of this technique by functionalizing broad range of materials including glass, plastics, metals, rough semiconductors and polymers, highlighting the potential applications in in situ colorimetry of the chemistry of materials, anti-counterfeit technologies, biomolecular and biomedical studies, light-matter interactions at the nanoscale, conformal photovoltaics and flexible electronics.

[1]  K. R. Williams,et al.  Etch rates for micromachining processing , 1996 .

[2]  K. R. Williams,et al.  Etch rates for micromachining processing-Part II , 2003 .

[3]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[4]  K. Kern,et al.  Engineering atomic and molecular nanostructures at surfaces , 2005, Nature.

[5]  Sarah Kim,et al.  Nanomachining by colloidal lithography. , 2006, Small.

[6]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[7]  H. Fredriksson,et al.  Hole–Mask Colloidal Lithography , 2007 .

[8]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[9]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[10]  H. Schift Nanoimprint lithography: An old story in modern times? A review , 2008 .

[11]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[12]  R. French,et al.  Immersion Lithography: Photomask and Wafer-Level Materials , 2009 .

[13]  G. Whitesides,et al.  Soft lithography for micro- and nanoscale patterning , 2010, Nature Protocols.

[14]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[15]  C. Wagner,et al.  EUV lithography: Lithography gets extreme , 2010 .

[16]  L. Vandersypen,et al.  Wedging transfer of nanostructures. , 2010, Nano letters.

[17]  Zhong Lin Wang,et al.  Shell-isolated nanoparticle-enhanced Raman spectroscopy , 2010, Nature.

[18]  J. Rogers,et al.  Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. , 2011, Nature nanotechnology.

[19]  Min Gu,et al.  Microfluidic sensing: state of the art fabrication and detection techniques. , 2011, Journal of biomedical optics.

[20]  X. Duan,et al.  Plasmon resonance enhanced multicolour photodetection by graphene. , 2011, Nature communications.

[21]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[22]  F. Schacher,et al.  Functional block copolymers: nanostructured materials with emerging applications. , 2012, Angewandte Chemie.

[23]  Bong Hoon Kim,et al.  Flexible and Transferrable Self‐Assembled Nanopatterning on Chemically Modified Graphene , 2013, Advanced materials.

[24]  H. Duan,et al.  Resolution limits of electron-beam lithography toward the atomic scale. , 2013, Nano letters (Print).

[25]  B. Rech,et al.  Polycrystalline silicon thin-film solar cells: Status and perspectives , 2013 .

[26]  J. Fischer,et al.  Three‐dimensional optical laser lithography beyond the diffraction limit , 2013 .

[27]  Z. Yin,et al.  A universal, rapid method for clean transfer of nanostructures onto various substrates. , 2014, ACS nano.

[28]  K. Suh,et al.  25th Anniversary Article: Scalable Multiscale Patterned Structures Inspired by Nature: the Role of Hierarchy , 2014, Advanced materials.

[29]  M. Deen,et al.  Low-cost fabrication technologies for nanostructures: state-of-the-art and potential , 2015, Nanotechnology.

[30]  V. Zhdanov,et al.  Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape. , 2015, Nature materials.

[31]  N. Seeman,et al.  Programmable materials and the nature of the DNA bond , 2015, Science.

[32]  Materials science: Unique wrinkles as identity tags , 2015, Nature.