Carvedilol and its new analogs suppress arrhythmogenic store overload–induced Ca2+ release

[1]  H. Yin,et al.  Inhibition of Cardiac Ca2+ Release Channels (RyR2) Determines Efficacy of Class I Antiarrhythmic Drugs in Catecholaminergic Polymorphic Ventricular Tachycardia , 2011, Circulation. Arrhythmia and electrophysiology.

[2]  W. Remme Which Beta-Blocker is Most Effective in Heart Failure? , 2010, Cardiovascular Drugs and Therapy.

[3]  M. Yano,et al.  Catecholaminergic Polymorphic Ventricular Tachycardia Is Caused by Mutation-Linked Defective Conformational Regulation of the Ryanodine Receptor , 2010, Circulation research.

[4]  David W Piston,et al.  Flecainide inhibits arrhythmogenic Ca2+ waves by open state block of ryanodine receptor Ca2+ release channels and reduction of Ca2+ spark mass. , 2010, Journal of molecular and cellular cardiology.

[5]  R. Kass,et al.  Molecular determinants of local anesthetic action of beta-blocking drugs: Implications for therapeutic management of long QT syndrome variant 3. , 2010, Journal of molecular and cellular cardiology.

[6]  Long-Sheng Song,et al.  Local control of Ca2+-induced Ca2+ release in mouse sinoatrial node cells. , 2009, Journal of molecular and cellular cardiology.

[7]  J. Geddes,et al.  What is a randomised controlled trial? , 2009, Epidemiologia e Psichiatria Sociale.

[8]  Lai-Hua Xie,et al.  Arrhythmogenic consequences of intracellular calcium waves. , 2009, American journal of physiology. Heart and circulatory physiology.

[9]  A. Leenhardt,et al.  Incidence and Risk Factors of Arrhythmic Events in Catecholaminergic Polymorphic Ventricular Tachycardia , 2009, Circulation.

[10]  D. Roden,et al.  Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans , 2009, Nature Medicine.

[11]  A. Zima,et al.  Tricyclic antidepressant amitriptyline alters sarcoplasmic reticulum calcium handling in ventricular myocytes. , 2008, American journal of physiology. Heart and circulatory physiology.

[12]  S. Mittal,et al.  The role of antiarrhythmic drug therapy for the prevention of sudden cardiac death. , 2008, Progress in cardiovascular diseases.

[13]  R. Stevens,et al.  GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor Function , 2007, Science.

[14]  José Jalife,et al.  Arrhythmogenic Mechanisms in a Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia , 2007, Circulation research.

[15]  Y. Shimoni,et al.  K201 (JTV519) suppresses spontaneous Ca2+ release and [3H]ryanodine binding to RyR2 irrespective of FKBP12.6 association. , 2007, The Biochemical journal.

[16]  J. Kaski,et al.  Atherosclerosis and Oxidant Stress: The End of the Road for Antioxidant Vitamin Treatment? , 2007, Cardiovascular Drugs and Therapy.

[17]  M. Viitasalo,et al.  Clinical Research , 2022 .

[18]  M. Yano,et al.  Scavenging free radicals by low-dose carvedilol prevents redox-dependent Ca2+ leak via stabilization of ryanodine receptor in heart failure. , 2007, Journal of the American College of Cardiology.

[19]  Wei Zhang,et al.  Mice with the R176Q cardiac ryanodine receptor mutation exhibit catecholamine-induced ventricular tachycardia and cardiomyopathy , 2006, Proceedings of the National Academy of Sciences.

[20]  S. Priori,et al.  Arrhythmogenesis in Catecholaminergic Polymorphic Ventricular Tachycardia: Insights From a RyR2 R4496C Knock-In Mouse Model , 2006 .

[21]  H. T. ter Keurs,et al.  Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon beta-adrenergic stimulation in normal and failing hearts. , 2006, The Biochemical journal.

[22]  Huihui Kong,et al.  Enhanced Store Overload–Induced Ca2+ Release and Channel Sensitivity to Luminal Ca2+ Activation Are Common Defects of RyR2 Mutations Linked to Ventricular Tachycardia and Sudden Death , 2005, Circulation research.

[23]  S. Priori,et al.  Bidirectional Ventricular Tachycardia and Fibrillation Elicited in a Knock-In Mouse Model Carrier of a Mutation in the Cardiac Ryanodine Receptor , 2005, Circulation research.

[24]  David C. Warltier,et al.  Characterization of a Novel PKA Phosphorylation Site, Serine-2030, Reveals No PKA Hyperphosphorylation of the Cardiac Ryanodine Receptor in Canine Heart Failure , 2005, Circulation research.

[25]  J. McMurray,et al.  Antiarrhythmic effect of carvedilol after acute myocardial infarction: results of the Carvedilol Post-Infarct Survival Control in Left Ventricular Dysfunction (CAPRICORN) trial. , 2005, Journal of the American College of Cardiology.

[26]  H. Krumholz,et al.  Adverse effects of beta-blocker therapy for patients with heart failure: a quantitative overview of randomized trials. , 2004, Archives of internal medicine.

[27]  Heping Cheng,et al.  RyR2 mutations linked to ventricular tachycardia and sudden death reduce the threshold for store-overload-induced Ca2+ release (SOICR). , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  C. Coffey,et al.  Adverse effects of -blocker therapy for patients with heart failure: A quantitative overview of ran , 2004 .

[29]  G. Isenberg,et al.  Altered Calcium Handling Is Critically Involved in the Cardiotoxic Effects of Chronic &bgr;-Adrenergic Stimulation , 2004, Circulation.

[30]  D. Bers,et al.  Cellular basis of triggered arrhythmias in heart failure. , 2004, Trends in cardiovascular medicine.

[31]  M. Gheorghiade,et al.  Carvedilol: beta-blockade and beyond. , 2004, Reviews in cardiovascular medicine.

[32]  B. Greenberg Nonselective versus selective beta-blockers in the management of chronic heart failure: clinical implications of the carvedilol or Metoprolol European Trial. , 2004, Reviews in cardiovascular medicine.

[33]  Heping Cheng,et al.  RyR 2 mutations linked to ventricular tachycardia and sudden death reduce the threshold for store-overload-induced Ca 2 release ( SOICR ) , 2004 .

[34]  D. Bers,et al.  Elevated Sarcoplasmic Reticulum Ca2+ Leak in Intact Ventricular Myocytes From Rabbits in Heart Failure , 2003, Circulation research.

[35]  R. Hajjar,et al.  Chronic treatment with Carvedilol improves ventricular function and reduces myocyte apoptosis in an animal model of heart failure , 2003, BMC Physiology.

[36]  P. Poole‐Wilson,et al.  Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial , 2003, The Lancet.

[37]  D. Burkhoff,et al.  &bgr;-Blockers Restore Calcium Release Channel Function and Improve Cardiac Muscle Performance in Human Heart Failure , 2003, Circulation.

[38]  L. Miller Limitations of current medical therapies for the treatment of heart failure. , 2003, Reviews in cardiovascular medicine.

[39]  A. Yao,et al.  Characteristic effects of alpha1-beta1,2-adrenergic blocking agent, carvedilol, on [Ca2+]i in ventricular myocytes compared with those of timolol and atenolol. , 2003, Circulation journal : official journal of the Japanese Circulation Society.

[40]  B. Xiao,et al.  Enhanced Basal Activity of a Cardiac Ca2+ Release Channel (Ryanodine Receptor) Mutant Associated With Ventricular Tachycardia and Sudden Death , 2002, Circulation research.

[41]  Carlo Napolitano,et al.  Clinical and Molecular Characterization of Patients With Catecholaminergic Polymorphic Ventricular Tachycardia , 2002, Circulation.

[42]  H. Krumholz,et al.  β-Blocker Therapy in Heart Failure: Scientific Review , 2002 .

[43]  W. Vaalburg,et al.  Synthesis and evaluation of radiolabeled antagonists for imaging of β-adrenoceptors in the brain with PET , 2002, Neurochemistry International.

[44]  D. Bers Calcium and cardiac rhythms: physiological and pathophysiological. , 2002, Circulation research.

[45]  H. Krumholz,et al.  beta-Blocker therapy in heart failure: scientific review. , 2002, JAMA.

[46]  S. Chen,et al.  Molecular Basis of Ca2+ Activation of the Mouse Cardiac Ca2+ Release Channel (Ryanodine Receptor) , 2001, The Journal of general physiology.

[47]  D M Bers,et al.  Sarcoplasmic reticulum Ca(2+) release causes myocyte depolarization. Underlying mechanism and threshold for triggered action potentials. , 2000, Circulation research.

[48]  B. Fagerberg Screening, endpoint classification, and safety monitoring in the Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT‐HF) , 2000, European journal of heart failure.

[49]  D. Jorkasky,et al.  Steady‐State Pharmacokinetics of Carvedilol and Its Enantiomers in Patients with Congestive Heart Failure , 2000, Journal of clinical pharmacology.

[50]  E. Lakatta,et al.  Spontaneous activation of beta(2)- but not beta(1)-adrenoceptors expressed in cardiac myocytes from beta(1)beta(2) double knockout mice. , 2000, Molecular pharmacology.

[51]  A. Hjalmarson Cardioprotection with beta-adrenoceptor blockers. Does lipophilicity matter? , 2000, Basic Research in Cardiology.

[52]  H. Girault,et al.  Structure-Lipophilicity Relationships of Neutral and Protonated β-Blockers, Part I, Intra- and Intermolecular Effects in Isotropic Solvent Systems , 1999 .

[53]  Bertram Pitt,et al.  Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction , 1996, The Lancet.

[54]  M. Kukin,et al.  Combined alpha-beta blockade (doxazosin plus metoprolol) compared with beta blockade alone in chronic congestive heart failure. , 1996, The American journal of cardiology.

[55]  L A Moyé,et al.  The cardiac arrhythmia suppression trial. Casting suppression in a different light. , 1995, Circulation.

[56]  J M de Bakker,et al.  Triggered activity and automaticity in ventricular trabeculae of failing human and rabbit hearts. , 1994, Cardiovascular research.

[57]  M. Fill,et al.  Surface charge potentiates conduction through the cardiac ryanodine receptor channel , 1994, The Journal of general physiology.

[58]  S. Douglas,et al.  Carvedilol, a cardiovascular drug, prevents vascular smooth muscle cell proliferation, migration, and neointimal formation following vascular injury. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[59]  H. Spahn‐Langguth,et al.  Carvedilol Stereopharmacokinetics in Rats: Affinities to Blood Constituents and Tissues , 1993, Archiv der Pharmazie.

[60]  Hung‐Yuan Cheng,et al.  Carvedilol, a new vasodilator and beta adrenoceptor antagonist, is an antioxidant and free radical scavenger. , 1992, The Journal of pharmacology and experimental therapeutics.

[61]  M. Fujimaki Stereoselective disposition and tissue distribution of carvedilol enantiomers in rats. , 1992, Chirality.

[62]  H L Greene,et al.  Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. , 1991, The New England journal of medicine.

[63]  G. Neugebauer,et al.  Pharmacokinetics and Disposition of Carvedilol in Humans , 1987, Journal of cardiovascular pharmacology.

[64]  E. Marbán,et al.  Mechanisms of arrhythmogenic delayed and early afterdepolarizations in ferret ventricular muscle. , 1986, The Journal of clinical investigation.

[65]  S. Fleischer,et al.  Calcium-induced calcium release from purified cardiac sarcoplasmic reticulum vesicles. General characteristics. , 1984, The Journal of biological chemistry.

[66]  E. Lakatta,et al.  Cellular calcium fluctuations in mammalian heart: direct evidence from noise analysis of aequorin signals in Purkinje fibers. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[67]  D. Allen,et al.  Oscillations of intracellular Ca2+ in mammalian cardiac muscle , 1983, Nature.

[68]  E. Lakatta,et al.  Scattered-light intensity fluctuations in diastolic rat cardiac muscle caused by spontaneous Ca++-dependent cellular mechanical oscillations , 1983, The Journal of general physiology.

[69]  R. Tsien,et al.  Fluctuations in membrane current driven by intracellular calcium in cardiac Purkinje fibers. , 1982, Biophysical journal.

[70]  H. Towbin,et al.  Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[71]  A. Fabiato,et al.  Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. , 1979, Journal de physiologie.

[72]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.