850 nm Oxide-VCSEL With Low Relative Intensity Noise and 40 Gb/s Error Free Data Transmission

We have designed and fabricated a high speed 850 nm oxide-confined vertical cavity surface emitting laser with an oxide aperture dimension of ~ 4 μm and a threshold current ITH=0.53 mA at room temperature (20 °C). It demonstrates a modulation bandwidth of 21.2 GHz, and achieves a laser relative intensity noise reaching standard quantum limit 2hν/P0=-154.3 dB/Hz at high bias I/ITH=10. Furthermore, error-free data transmission at 40 Gb/s is obtained at I=6.5 mA which corresponds to an energy/data efficiency of 431 fJ/bit.

[1]  Alex Mutig,et al.  40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL , 2010 .

[2]  Hui Li,et al.  56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s , 2012 .

[3]  Explanation of low‐frequency relative intensity noise in semiconductor lasers , 1990 .

[4]  M. Lax Quantum noise VII: The rate equations and amplitude noise in lasers , 1967 .

[5]  J. Sarathy,et al.  Low-threshold continuous-wave surface emitting lasers with etched void confinement , 1994, IEEE Photonics Technology Letters.

[6]  Johan S. Gustavsson,et al.  High-speed 850 nm VCSELs with 28 GHz modulation bandwidth , 2012, CLEO 2015.

[7]  P. Westbergh,et al.  High-Speed Oxide Confined 850-nm VCSELs Operating Error-Free at 40 Gb/s up to 85$^{\circ}{\rm C}$ , 2013, IEEE Photonics Technology Letters.

[8]  Jörgen Bengtsson,et al.  Direct high-frequency modulation of VCSELs and applications in fibre optic RF and microwave links , 2004 .

[9]  Hui Li,et al.  Energy efficient 40 Gbit/s transmission with 850 nm VCSELs at 108 fJ/bit dissipated heat , 2013 .

[10]  Milton Feng,et al.  The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity , 2011 .

[11]  Mikhail V. Maximov,et al.  Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s , 2009 .

[12]  D. Deppe,et al.  Native-Oxide Defined Ring Contact for Low Threshold Vertical-Cavity Lasers , 1994 .

[13]  A. R. Sugg,et al.  Hydrolyzation oxidation of AlxGa1−xAs‐AlAs‐GaAs quantum well heterostructures and superlattices , 1990 .

[14]  N. Holonyak,et al.  Relative intensity noise in high speed microcavity laser , 2013 .

[15]  C. S. Wang,et al.  High-efficiency, high-speed VCSELs with 35 Gbit=s error-free operation , 2007 .

[16]  Agrawal Mode-partition noise and intensity correlation in a two-mode semiconductor laser. , 1988, Physical review. A, General physics.

[17]  Milton Feng,et al.  Energy efficient microcavity lasers with 20 and 40 Gb/s data transmission , 2011 .

[18]  D. Mccumber,et al.  Intensity Fluctuations in the Output of cw Laser Oscillators. I , 1966 .

[19]  Rainer Michalzik,et al.  Noise characteristics of 850 nm single-mode vertical cavity surface emitting lasers , 1998 .