Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis

[1]  Nicola Elvassore,et al.  Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture , 2019, Nature Communications.

[2]  Hans Clevers,et al.  Cancer modeling meets human organoid technology , 2019, Science.

[3]  J. Lang,et al.  The roles of metallothioneins in carcinogenesis , 2018, Journal of Hematology & Oncology.

[4]  Dong Gao,et al.  Patient derived organoids to model rare prostate cancer phenotypes , 2018, Nature Communications.

[5]  P. Higgins,et al.  A Method for Cryogenic Preservation of Human Biopsy Specimens and Subsequent Organoid Culture , 2018, Cellular and molecular gastroenterology and hepatology.

[6]  Paolo De Coppi,et al.  Whole Organ Tissue Vascularization: Engineering the Tree to Develop the Fruits , 2018, Front. Bioeng. Biotechnol..

[7]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[8]  Gordana Vunjak-Novakovic,et al.  Organs-on-a-Chip: A Fast Track for Engineered Human Tissues in Drug Development. , 2018, Cell stem cell.

[9]  Alyssa J Miller,et al.  Identification, isolation and characterization of human LGR5-positive colon adenoma cells , 2017, Development.

[10]  D. Garry,et al.  Etv2 as an essential regulator of mesodermal lineage development. , 2017, Cardiovascular research.

[11]  Meilin Wang,et al.  Plasma Mesothelin as a Novel Diagnostic and Prognostic Biomarker in Colorectal Cancer , 2017, Journal of Cancer.

[12]  O. Elemento,et al.  Sox17 drives functional engraftment of endothelium converted from non-vascular cells , 2017, Nature Communications.

[13]  S. Rafii,et al.  Molecular Checkpoint Decisions Made by Subverted Vascular Niche Transform Indolent Tumor Cells into Chemoresistant Cancer Stem Cells. , 2017, Cancer cell.

[14]  Toshiro Sato,et al.  Establishment of 3D Intestinal Organoid Cultures from Intestinal Stem Cells. , 2017, Methods in molecular biology.

[15]  Eugenia G. Giannopoulou,et al.  Epigenetic profiles signify cell fate plasticity in unipotent spermatogonial stem and progenitor cells , 2016, Nature Communications.

[16]  S. Rafii,et al.  Direct conversion of human amniotic cells into endothelial cells without transitioning through a pluripotent state , 2015, Nature Protocols.

[17]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[18]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[19]  D. Ingber,et al.  Microfluidic organs-on-chips , 2014, Nature Biotechnology.

[20]  Juergen A. Knoblich,et al.  Organogenesis in a dish: Modeling development and disease using organoid technologies , 2014, Science.

[21]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[22]  Hiroyuki Miyoshi,et al.  In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture , 2013, Nature Protocols.

[23]  Olivier Elemento,et al.  Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. , 2013, Developmental cell.

[24]  Duc-Huy T Nguyen,et al.  Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro , 2013, Proceedings of the National Academy of Sciences.

[25]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[26]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[27]  Krishnamurthy V. Nemani,et al.  The diaphragms of fenestrated endothelia: gatekeepers of vascular permeability and blood composition. , 2012, Developmental cell.

[28]  Olivier Elemento,et al.  Efficient Direct Reprogramming of Mature Amniotic Cells into Endothelial Cells by ETS Factors and TGFβ Suppression , 2012, Cell.

[29]  V. Kouskoff,et al.  ETV2 expression marks blood and endothelium precursors, including hemogenic endothelium, at the onset of blood development , 2012, Developmental dynamics : an official publication of the American Association of Anatomists.

[30]  Laure Gambardella,et al.  A Computational Tool for Quantitative Analysis of Vascular Networks , 2011, PloS one.

[31]  Hans Clevers,et al.  Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. , 2011, Gastroenterology.

[32]  P. Carmeliet,et al.  Molecular mechanisms and clinical applications of angiogenesis , 2011, Nature.

[33]  Daniel Eberhard,et al.  ‘Giving and taking’: endothelial and β-cells in the islets of Langerhans , 2010, Trends in Endocrinology & Metabolism.

[34]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[35]  Elisabetta Dejana,et al.  The molecular basis of vascular lumen formation in the developing mouse aorta. , 2009, Developmental cell.

[36]  Chen Zeng,et al.  A clustering approach for identification of enriched domains from histone modification ChIP-Seq data , 2009, Bioinform..

[37]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[38]  H. Clevers,et al.  Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche , 2009, Nature.

[39]  Ian A. White,et al.  Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene , 2008, Proceedings of the National Academy of Sciences.

[40]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[41]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[42]  Michel Vaubourdolle,et al.  A protocol for isolation and culture of human umbilical vein endothelial cells , 2007, Nature Protocols.

[43]  W. Gerald,et al.  Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts , 1999, Nature.