Podality-Based Time-Optimal Computations on Enhanced Meshes

The main contribution of this paper is to present simple and elegant podality-based algorithms for a variety of computational tasks motivated by, and finding applications to, pattern recognition, computer graphics, computational morphology, image processing, robotics, computer vision, and VLSI design. The problems that we address involve computing the convex hull, the diameter, the width, and the smallest area enclosing rectangle of a set of points in the plane, as well as the problems of finding the maximum Euclidian distance between two planar sets of points, and of constructing the Minkowski sum of two convex polygons. Specifically, we show that once we fix a positive constant /spl epsiv/, all instances of size m, (n/sup 1/2 +/spl epsiv///spl les/m/spl les/n) of the problems above, stored in the first [m//spl radic/n] columns of a mesh with multiple broadcasting of size /spl radic/n/spl times//spl radic/n can be solved time-optimally in /spl Theta/(m//spl radic/n) time.

[1]  Stephan Olariu,et al.  Optimal convex hull algorithms on enhanced meshes , 1993, BIT Comput. Sci. Sect..

[2]  Kang G. Shin,et al.  Implementation of Decentralized Load Sharing in Networked Workstations Using the Condor Package , 1997, J. Parallel Distributed Comput..

[3]  Jerry L. Potter The Massively Parallel Processor , 1985 .

[4]  Stephan Olariu,et al.  Time- and VLSI-optimal Sorting on Meshes with Multiple Broadcasting , 1993, 1993 International Conference on Parallel Processing - ICPP'93.

[5]  Herbert Freeman,et al.  Determining the minimum-area encasing rectangle for an arbitrary closed curve , 1975, CACM.

[6]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[7]  G. Toussaint Solving geometric problems with the rotating calipers , 1983 .

[8]  Jang-Ping Sheu,et al.  Designing Efficient Parallel Algorithms on Mech-Connected Computers with Multiple Broadcasting , 1990, IEEE Trans. Parallel Distributed Syst..

[9]  Kenneth E. Batcher STARAN parallel processor system hardware , 1974, AFIPS '74.

[10]  Stephan Olariu,et al.  Time- and VLSI-optimal convex hull computation on meshes with multiple broadcasting , 1995, Proceedings Frontiers '95. The Fifth Symposium on the Frontiers of Massively Parallel Computation.

[11]  Massimo Maresca,et al.  Polymorphic Processor Arrays , 1993, IEEE Trans. Parallel Distributed Syst..

[12]  Godfried T. Toussaint,et al.  A simple O(n log n) algorithm for finding the maximum distance between two finite planar sets , 1982, Pattern Recognit. Lett..

[13]  Michael Ian Shamos,et al.  Geometric complexity , 1975, STOC.

[14]  Amotz Bar-Noy,et al.  Square meshes are not always optimal , 1989, SPAA '89.

[15]  Stephan Olariu,et al.  A Time-Optimal Multiple Search Algorithm on Enhanced Meshes, with Applications , 1994, J. Parallel Distributed Comput..

[16]  Stephan Olariu,et al.  An efficient VLSI architecture for digital geometry , 1994, Proceedings of IEEE International Conference on Application Specific Array Processors (ASSAP'94).

[17]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[18]  Stephan Olariu,et al.  Time- and VLSI-Optimal Convex Hull Computation on Meshes with Multiple Broadcasting , 1995, Inf. Process. Lett..

[19]  Stephan Olariu,et al.  Square Meshes are not Optimal for Convex Hull Computation , 1993, 1993 International Conference on Parallel Processing - ICPP'93.

[20]  Viktor K. Prasanna,et al.  Array Processor with Multiple Broadcasting , 1985, ISCA.

[21]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[22]  D. Parkinson,et al.  The AMT DAP 500 , 1988, Digest of Papers. COMPCON Spring 88 Thirty-Third IEEE Computer Society International Conference.

[23]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[24]  Russ Miller,et al.  Efficient Parallel Convex Hull Algorithms , 1988, IEEE Trans. Computers.

[25]  Wen-Tsuen Chen,et al.  Efficient Medain Finding and Its Application to Two-Variable Linear Programming on Mesh-Connected Computers with Multiple Broadcasting , 1992, J. Parallel Distributed Comput..

[26]  P. Erdös On Sets of Distances of n Points , 1946 .

[27]  Peter E. Hart,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[28]  Dionysios I. Reisis,et al.  Image Computations on Meshes with Multiple Broadcast , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Ivan Stojmenovic,et al.  Time-Optimal Nearest-Neighbor Computations on Enhanced Meshes , 1996, J. Parallel Distributed Comput..

[30]  Massimo Maresca,et al.  Polymorphic-Torus Network , 1989, IEEE Trans. Computers.

[31]  Ivan Stojmenovic,et al.  Time-Optimal Visibility-Related Algorithms on Meshes with Multiple Broadcasting , 1995, IEEE Trans. Parallel Distributed Syst..

[32]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[33]  Jingyuan Zhang,et al.  Convex Polygon Problems on Meshes with Multiple Broadcasting , 1992, Parallel Process. Lett..

[34]  Kenneth E. Batcher,et al.  Design of a Massively Parallel Processor , 1980, IEEE Transactions on Computers.

[35]  Godfried T. Toussaint,et al.  Computing the Width of a Set , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Stephan Olariu,et al.  A Fast Selection Algorithm for Meshes with Multiple Broadcasting , 1994, IEEE Trans. Parallel Distributed Syst..