Combined high-pressure and high-temperature vibrational studies of dolomite: phase diagram and evidence of a new distorted modification

[1]  U. Schade,et al.  Phase transitions in the system CaCO3 at high P and T determined by in situ vibrational spectroscopy in diamond anvil cells and first-principles simulations , 2016, Physics and Chemistry of Minerals.

[2]  M. Hanfland,et al.  The effect of cation ordering and temperature on the high-pressure behaviour of dolomite , 2014, Physics and Chemistry of Minerals.

[3]  Yan Bi,et al.  Effect of pressure and temperature on the wavelength shift of the fluorescence line of SrB 4O 7:Sm 2+ scale , 2013 .

[4]  H. K. Poswal,et al.  Pressure-induced structural transformations in the low-cristobalite form of AlPO4 , 2013 .

[5]  M. Gemmi,et al.  Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle , 2012, Proceedings of the National Academy of Sciences.

[6]  M. Hanfland,et al.  CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: Possible host structures for carbon in the Earth's mantle , 2012 .

[7]  M. Mrosko,et al.  In-situ mid/far micro-FTIR spectroscopy to trace pressure-induced phase transitions in strontium feldspar and wadsleyite , 2011 .

[8]  A. Kavner,et al.  Dolomite III: A new candidate lower mantle carbonate , 2011 .

[9]  R. Jeanloz,et al.  Determination of the variation of the fluorescence line positions of ruby, strontium tetraborate, alexandrite, and samarium-doped yttrium aluminum garnet with pressure and temperature , 2011 .

[10]  K. Koga,et al.  Ordering in double carbonates and implications for processes at subduction zones , 2011 .

[11]  E. Bobocioiu,et al.  The WURM project—a freely available web-based repository of computed physical data for minerals , 2011 .

[12]  M. Hirschmann,et al.  The deep carbon cycle and melting in Earth's interior , 2010 .

[13]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[14]  J. Chervin,et al.  Hydrostatic limits of 11 pressure transmitting media , 2009 .

[15]  Yanming Ma,et al.  Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth's lower mantle , 2008 .

[16]  A. Dewaele,et al.  Optical pressure sensors for high-pressure–high-temperature studies in a diamond anvil cell , 2007 .

[17]  C. Vollmer,et al.  Carbonates from the lower part of transition zone or even the lower mantle , 2007 .

[18]  L. Valenzano,et al.  Ab initio vibrational spectra and dielectric properties of carbonates: magnesite, calcite and dolomite , 2007 .

[19]  G. Droop,et al.  Double carbonate breakdown reactions at high pressures: an experimental study in the system CaO–MgO–FeO–MnO–CO2 , 2006 .

[20]  P. Ulmer,et al.  Experiments on CaCO3-MgCO3 solid solutions at high pressure and temperature , 2006 .

[21]  K. Hagiya,et al.  The crystal data and stability of calcite III at high pressures based on single-crystal X-ray experiments , 2005 .

[22]  X. Gonze,et al.  Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory , 2004, cond-mat/0409067.

[23]  J. Parise,et al.  Cation disorder in dolomite, CaMg(CO3)2, and its influence on the aragonite + magnesite ↔ dolomite reaction boundary , 2004 .

[24]  Q. Williams,et al.  A high-pressure infrared and X-ray study of FeCO3 and MnCO3: comparison with CaMg(CO3)2-dolomite , 2004 .

[25]  H. Keppler,et al.  Carbon solubility in olivine and the mode of carbon storage in the Earth's mantle , 2003, Nature.

[26]  Q. Williams,et al.  Dolomite‐II: A high‐pressure polymorph of CaMg(CO3)2 , 2003 .

[27]  T. Kikegawa,et al.  In situ X-ray observation of the reaction dolomite = aragonite + magnesite at 900–1300 K , 2002 .

[28]  R. Luth Experimental determination of the reaction aragonite + magnesite = dolomite at 5 to 9 GPa , 2001 .

[29]  T. Katsura,et al.  Experimental investigation on dolomite dissociation into aragonite+magnesite up to 8.5 GPa , 2001 .

[30]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[31]  J. Schneider,et al.  High-Pressure Study of h.c.p.-Argon , 1997 .

[32]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[33]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[34]  R. Reeder,et al.  In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature: Evidence for dolomite breakdown to aragonite and magnesit , 1996 .

[35]  Chung-Cherng Lin,et al.  High-pressure phase transformations of carbonates in the system CaoMgOSiO2CO2 , 1995 .

[36]  J. Itié,et al.  High-pressure X-ray diffraction study of carbonates; MgCO 3 , CaMg(CO 3 ) 2 , and CaCO 3 ) , 1994 .

[37]  B. Reynard,et al.  Experimental evidence for carbonate stability in the Earth's lower mantle , 1993 .

[38]  R. Reeder,et al.  High-pressure structural study of dolomite and ankerite , 1992 .

[39]  Q. Williams,et al.  Carbonate stability in the Earth's mantle: A vibrational spectroscopic study of aragonite and dolomite at high pressures and temperatures , 1991 .

[40]  González,et al.  High-pressure phase transition and phase diagram of gallium arsenide. , 1991, Physical review. B, Condensed matter.

[41]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[42]  R. Reeder,et al.  Structural variation in the dolomite-ankerite solid-solution series; an X-ray, Moessbauer, and TEM study , 1989 .

[43]  W. Heinrich,et al.  Experimental investigation of the mechanism of the reaction: 1 tremolite+11 dolomite ⇌ 8 forsterite+13 calcite+9 CO2+1H2O , 1986 .

[44]  Peter M. Bell,et al.  Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions , 1986 .

[45]  H. Wenk,et al.  Structure refinements of some thermally disordered dolomites , 1983 .

[46]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[47]  W. Bassett,et al.  The crystal structure of CaCO3(II), a high‐pressure metastable phase of calcium carbonate , 1975 .

[48]  K. Hellwege,et al.  Zwei-Phononen-Absorptionsspektren und Dispersion der Schwingungszweige in Kristallen der Kalkspatstruktur , 1970 .

[49]  H. Steinfink,et al.  Refinement of the crystal structure of dolomite , 1959 .

[50]  G. Redhammer,et al.  The (Na,Li)FeGe2O6 clinopyroxene-type series: a temperature-dependent single-crystal X-ray diffraction and 57Fe Mössbauer spectroscopic study , 2015, Physics and Chemistry of Minerals.

[51]  Piotr M. Kowalski,et al.  Theoretical Approaches to Structure and Spectroscopy of Earth Materials , 2014 .

[52]  P. Schouwink,et al.  Puzzling calcite-III dimorphism: crystallography, high-pressure behavior, and pathway of single-crystal transitions , 2014, Physics and Chemistry of Minerals.

[53]  S. Speziale,et al.  Stress-induced proton disorder in hydrous ringwoodite , 2011, PCM 2011.

[54]  M. Sakata,et al.  Stability of magnesite and its high-pressure form in the lowermost mantle , 2004, Nature.

[55]  K. Takemura Evaluation of the hydrostaticity of a helium-pressure medium with powder x-ray diffraction techniques , 2001 .

[56]  B. Reynard,et al.  Raman spectroscopic studies of carbonates part I: High-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite , 1993 .

[57]  D. Hatch,et al.  Landau description of the calcite-CaC O 3 (II) phase transition , 1981 .