Generalized B-splines as a tool in Isogeometric Analysis
暂无分享,去创建一个
[1] D. Schweikert. An Interpolation Curve Using a Spline in Tension , 1966 .
[2] Joe D. Warren,et al. A subdivision scheme for surfaces of revolution , 2001, Comput. Aided Geom. Des..
[3] G. Sangalli,et al. Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .
[4] Carla Manni,et al. Quasi-interpolation in isogeometric analysis based on generalized B-splines , 2010, Comput. Aided Geom. Des..
[5] P. Gould. Introduction to Linear Elasticity , 1983 .
[6] T. Hughes,et al. Efficient quadrature for NURBS-based isogeometric analysis , 2010 .
[7] P. Sattayatham,et al. GB-splines of arbitrary order , 1999 .
[8] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[9] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[10] J. M. Peña,et al. Critical Length for Design Purposes and Extended Chebyshev Spaces , 2003 .
[11] Guozhao Wang,et al. Unified and extended form of three types of splines , 2008 .
[12] Miljenko Marušić,et al. Sharp error bounds for interpolating splines in tension , 1995 .
[13] Alessandro Reali,et al. Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .
[14] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[15] A. Quarteroni. Numerical Models for Differential Problems , 2009 .
[16] C. Manni,et al. Geometric Construction of Generalized Cubic Splines , 2006 .
[17] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[18] Juan Manuel Peña,et al. Shape preserving alternatives to the rational Bézier model , 2001, Comput. Aided Geom. Des..
[19] Nira Dyn,et al. Exponentials Reproducing Subdivision Schemes , 2003, Found. Comput. Math..
[20] Rida T. Farouki,et al. Real rational curves are not 'unit speed' , 1991, Comput. Aided Geom. Des..
[21] Marie-Laurence Mazure,et al. Chebyshev-Bernstein bases , 1999, Comput. Aided Geom. Des..
[22] Tom Lyche,et al. On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.
[23] Lucia Romani. From approximating subdivision schemes for exponential splines to high-performance interpolating algorithms , 2009 .
[24] Weiyin Ma,et al. A generalized curve subdivision scheme of arbitrary order with a tension parameter , 2010, Comput. Aided Geom. Des..