Nanoelectronics, Circuits and Nanoprocessors

As electronic device features have been pushed into the deep sub-100-nm regime, conventional scaling strategies in the semiconductor industry have faced technological and economic challenges. Electronics obtained through the bottom-up approach of molecular-level control of material composition and structure may lead to devices and fabrication strategies as well as new architectures not readily accessible or even possible within the context of the top-down driven industry and manufacturing infrastructure. This chapter presents a summary of recent advances in basic nanoelectronics devices, simple circuits and nanoprocessors assembled by semiconductor NWs.

[1]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[2]  Erik Lind,et al.  Combining axial and radial nanowire heterostructures: radial Esaki diodes and tunnel field-effect transistors. , 2013, Nano letters.

[3]  Sung In Kim,et al.  Reversible resistive switching behaviors in NiO nanowires , 2008 .

[4]  Donhee Ham,et al.  Nanotechnology: High-speed integrated nanowire circuits , 2005, Nature.

[5]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[6]  J. Rogers,et al.  Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon , 2008, IEEE Electron Device Letters.

[7]  Emanuel Tutuc,et al.  Realization of a linear germanium nanowire p-n junction. , 2006, Nano letters.

[8]  T. Fukui,et al.  A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.

[9]  C. Lieber,et al.  Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed. , 2008, Nano letters.

[10]  Moon-Ho Jo,et al.  Band-gap modulation in single-crystalline Si1-xGex nanowires. , 2006, Nano letters.

[11]  Xu Gao,et al.  Intrinsic Ge nanowire nonvolatile memory based on a simple core-shell structure. , 2014, Nanotechnology.

[12]  J. Heath,et al.  Bridging Dimensions: Demultiplexing Ultrahigh-Density Nanowire Circuits , 2005, Science.

[13]  Charles M. Lieber,et al.  Encoding Electronic Properties by Synthesis of Axial Modulation-Doped Silicon Nanowires , 2005, Science.

[14]  Martin,et al.  Theoretical calculations of heterojunction discontinuities in the Si/Ge system. , 1986, Physical review. B, Condensed matter.

[15]  Wen-Yuan Chang,et al.  Single-ZnO-Nanowire Memory , 2011, IEEE Transactions on Electron Devices.

[16]  M. Mitchell Waldrop,et al.  The chips are down for Moore’s law , 2016, Nature.

[17]  Charles M. Lieber,et al.  Nonvolatile Memory and Programmable Logic from Molecule-Gated Nanowires , 2002 .

[18]  Zhong Lin Wang Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics , 2010 .

[19]  Wei Lu,et al.  TOPICAL REVIEW: Semiconductor nanowires , 2006 .

[20]  T. Bryllert,et al.  Vertical high-mobility wrap-gated InAs nanowire transistor , 2006, IEEE Electron Device Letters.

[21]  Anatoli Korkin,et al.  Nano and Giga Challenges in Microelectronics , 2003 .

[22]  Wei Lu,et al.  Doping-dependent electrical characteristics of SnO2 nanowires. , 2008, Small.

[23]  Mohit Bajaj,et al.  Carrier transport in high mobility InAs nanowire junctionless transistors. , 2015, Nano letters.

[24]  John A Rogers,et al.  Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials , 2006, Science.

[25]  Daniele Ielmini,et al.  Nanowire-based resistive switching memories: devices, operation and scaling , 2013 .

[26]  Wei Lu,et al.  Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures , 2004, Nature.

[27]  Peidong Yang,et al.  Silicon Vertically Integrated Nanowire Field Effect Transistors , 2006 .

[28]  M. Meyyappan,et al.  Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor , 2004 .

[29]  Donhee Ham,et al.  Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits , 2009, Proceedings of the National Academy of Sciences.

[30]  Ho-Young Cha,et al.  Fabrication and characterization of pre-aligned gallium nitride nanowire field-effect transistors , 2006 .

[31]  Chao Li,et al.  Nanowire transistors with ferroelectric gate dielectrics: Enhanced performance and memory effects , 2004 .

[32]  Kok-Keong Lew,et al.  In situ axially doped n-channel silicon nanowire field-effect transistors. , 2008, Nano letters.

[33]  Daniel Page Arithmetic and Logic , 2009 .

[34]  Hao Yan,et al.  Programmable nanowire circuits for nanoprocessors , 2011, Nature.

[35]  Se-Ho Lee,et al.  Synthesis and characterization of Ge2Sb2Te5 nanowires with memory switching effect. , 2006, Journal of the American Chemical Society.

[36]  B. Yang,et al.  Vertical Silicon-Nanowire Formation and Gate-All-Around MOSFET , 2008, IEEE Electron Device Letters.

[37]  James R. Heath,et al.  High performance ring oscillators from 10-nm wide silicon nanowire field-effect transistors , 2011 .

[38]  Emanuel Tutuc,et al.  Radial modulation doping in core-shell nanowires. , 2014, Nature nanotechnology.

[39]  C. Ballif,et al.  Axial p-n junctions realized in silicon nanowires by ion implantation. , 2009, Nano letters.

[40]  Xiao Wei Sun,et al.  Ferroelectric transistors with nanowire channel: toward nonvolatile memory applications. , 2009, ACS nano.

[41]  Masateru Taniguchi,et al.  Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. , 2010, Nano letters.

[42]  Bozhi Tian,et al.  Rational growth of branched nanowire heterostructures with synthetically encoded properties and function , 2011, Proceedings of the National Academy of Sciences.

[43]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[44]  Bozhi Tian,et al.  Single and tandem axial p-i-n nanowire photovoltaic devices. , 2008, Nano letters.

[45]  Zhong‐Lin Wang,et al.  Strain‐Gated Piezotronic Logic Nanodevices , 2010, Advanced materials.

[46]  N. Petkov,et al.  Semiconductor Nanowire Fabrication by Bottom-Up and Top-Down Paradigms , 2012 .

[47]  H.-S. Philip Wong,et al.  Phase Change Memory , 2010, Proceedings of the IEEE.

[48]  Se-Ho Lee,et al.  Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires , 2006 .

[49]  Tomoji Kawai,et al.  Resistive-switching memory effects of NiO nanowire/metal junctions. , 2010, Journal of the American Chemical Society.

[50]  Xiangfeng Duan,et al.  Nanowire Thin-Film Transistors: A New Avenue to High-Performance Macroelectronics , 2008, IEEE Transactions on Electron Devices.

[51]  Wei Lu,et al.  Synthesis and Fabrication of High‐Performance n‐Type Silicon Nanowire Transistors , 2004 .

[52]  Chi-Woo Lee,et al.  Nanowire transistors without junctions. , 2010, Nature nanotechnology.

[53]  Wei Lu,et al.  Fully transparent thin-film transistor devices based on SnO2 nanowires. , 2007, Nano letters.

[54]  Li Zhang,et al.  Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors. , 2006, Nano letters.

[55]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[56]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[57]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[58]  Qian Wang,et al.  Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics , 2003 .

[59]  Volker Schmidt,et al.  Silicon Nanowires: A Review on Aspects of their Growth and their Electrical Properties , 2009, Advanced materials.

[60]  Charles M. Lieber,et al.  Growth and transport properties of complementary germanium nanowire field-effect transistors , 2004 .

[61]  Hiroyuki Tanaka,et al.  Overview and Future Challenge of Ferroelectric Random Access Memory Technologies , 2007 .

[62]  Heon-Jin Choi,et al.  Interface charge induced p-type characteristics of aligned Si(1-x)Gex nanowires. , 2008, Nano letters.

[63]  Diana Mahalu,et al.  Self-integration of nanowires into circuits via guided growth , 2013, Proceedings of the National Academy of Sciences.

[64]  Leon O. Chua Resistance switching memories are memristors , 2011 .

[65]  Jang-Sik Lee,et al.  Progress in non-volatile memory devices based on nanostructured materials and nanofabrication , 2011 .

[66]  Charles M. Lieber,et al.  Doping and Electrical Transport in Silicon Nanowires , 2000 .

[67]  Erik Lind,et al.  Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor. , 2006, Nano letters.

[68]  Jae-Young Yu,et al.  Silicon Nanowires: Preparation, Device Fabrication, and Transport Properties , 2000 .

[69]  Ren-Min Ma,et al.  High-performance logic circuits constructed on single CdS nanowires. , 2007, Nano letters.

[70]  Michael C. McAlpine,et al.  Scalable Interconnection and Integration of Nanowire Devices without Registration , 2004 .

[71]  J. Deen,et al.  Nanoscale memory devices , 2010, Nanotechnology.

[72]  Susan Trolier-McKinstry,et al.  The Properties of Ferroelectric Films at Small Dimensions , 2000 .

[73]  Hubert Kaeslin,et al.  Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication , 2008 .

[74]  Yi Cui,et al.  Synthesis and characterization of phase-change nanowires. , 2006, Nano letters.

[75]  Stefano Ossicini,et al.  Silicon-germanium nanowires: chemistry and physics in play, from basic principles to advanced applications. , 2014, Chemical reviews.

[76]  Se-Ho Lee,et al.  Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. , 2007, Nature nanotechnology.

[77]  Charles M Lieber,et al.  One-dimensional hole gas in germanium/silicon nanowire heterostructures. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[79]  N. Singh,et al.  Multibit Programmable Flash Memory Realized on Vertical Si Nanowire Channel , 2010, IEEE Electron Device Letters.

[80]  Adrian M Ionescu,et al.  Nanowire transistors made easy. , 2010, Nature nanotechnology.

[81]  E. Vogel,et al.  Enhanced channel modulation in dual-gated silicon nanowire transistors. , 2005, Nano letters.

[82]  Chung-Ying Yang,et al.  Phase-change Ge-Sb nanowires: synthesis, memory switching, and phase-instability. , 2009, Nano letters.

[83]  Charles M. Lieber,et al.  Semiconductor nanowires: A platform for nanoscience and nanotechnology , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[84]  Helmut Baumgart,et al.  Fabrication, characterization and simulation of high performance Si nanowire-based non-volatile memory cells , 2011, Nanotechnology.

[85]  Charles M Lieber,et al.  Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording. , 2012, Nano letters.

[86]  Lars Samuelson,et al.  Nanowire-based multiple quantum dot memory , 2006 .

[87]  Hao Yan,et al.  A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. , 2013, Nature nanotechnology.

[88]  Pyo Jin Jeon,et al.  Long single ZnO nanowire for logic and memory circuits: NOT, NAND, NOR gate, and SRAM , 2013 .

[89]  Hao Yan,et al.  Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. , 2007, Nano letters.

[90]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[91]  Phaedon Avouris,et al.  Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts , 2003 .

[92]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[93]  Xiangfeng Duan,et al.  High-performance thin-film transistors using semiconductor nanowires and nanoribbons , 2003, Nature.

[94]  John J. Sparkes Transistor Switching and Sequential Circuits , 1969 .

[95]  Jun Yao,et al.  Nanowire nanocomputer as a finite-state machine , 2014, Proceedings of the National Academy of Sciences.

[96]  C. Lieber,et al.  Synthesis of p-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices , 2003 .

[97]  Su Seok Choi,et al.  Novel nonvolatile memory with multibit storage based on a ZnO nanowire transistor. , 2010, Nano letters.

[98]  Daniele Ielmini,et al.  Resistive-switching crossbar memory based on Ni-NiO core-shell nanowires. , 2011, Small.

[99]  Oliver Hayden,et al.  Semiconductor nanowire devices , 2008 .

[100]  Wei Lu,et al.  Si/a-Si core/shell nanowires as nonvolatile crossbar switches. , 2008, Nano letters.

[101]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[102]  Charles M. Lieber,et al.  Gallium Nitride Nanowire Nanodevices , 2002 .

[103]  André DeHon,et al.  Stochastic assembly of sublithographic nanoscale interfaces , 2003 .

[104]  Shadi A Dayeh,et al.  High electron mobility InAs nanowire field-effect transistors. , 2007, Small.

[105]  Zhi-Min Liao,et al.  Memory and threshold resistance switching in Ni/NiO core-shell nanowires. , 2011, Nano letters.

[106]  Charles M. Lieber,et al.  Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. , 2006, Nano letters.

[107]  W. Park,et al.  ZnO Nanorod Logic Circuits , 2005, Advanced materials.

[108]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[109]  Friedrich Schäffler,et al.  High-mobility Si and Ge structures , 1997 .

[110]  J. F. Stoddart,et al.  Nanoscale molecular-switch crossbar circuits , 2003 .

[111]  Xiaocheng Jiang,et al.  InAs/InP radial nanowire heterostructures as high electron mobility devices. , 2007, Nano letters.

[112]  Dong Yu,et al.  Germanium telluride nanowires and nanohelices with memory-switching behavior. , 2006, Journal of the American Chemical Society.

[113]  Pyo Jin Jeon,et al.  Ferroelectric Nonvolatile Nanowire Memory Circuit Using a Single ZnO Nanowire and Copolymer Top Layer , 2012, Advanced materials.

[114]  Konstantin K. Likharev,et al.  Electronics Below 10 nm , 2003 .

[115]  Kenji Hiruma,et al.  GaAs p‐n junction formed in quantum wire crystals , 1992 .

[116]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[117]  Wei Lu,et al.  Nanowire Transistor Performance Limits and Applications , 2008, IEEE Transactions on Electron Devices.

[118]  Tomoji Kawai,et al.  Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires. , 2009, Journal of the American Chemical Society.

[119]  Charles M. Lieber,et al.  Nanoscale Science and Technology: Building a Big Future from Small Things , 2003 .

[120]  Peidong Yang,et al.  ZnO nanowire transistors. , 2005, The journal of physical chemistry. B.

[121]  Charles M. Lieber,et al.  Assembly and integration of semiconductor nanowires for functional nanosystems , 2010 .

[122]  C. Lieber,et al.  Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems , 2003, Science.

[123]  Charles M Lieber,et al.  Programmable resistive-switch nanowire transistor logic circuits. , 2014, Nano letters.

[124]  Dongmok Whang,et al.  Large-scale hierarchical organization of nanowire arrays for integrated nanosystems , 2003 .

[125]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.