Manifested flatness defect prediction in cold rolling of thin strips

Flatness defects in thin strip cold rolling are a consequence of roll thermo-elastic deformation, from which heterogeneous strip plastic deformation results. When flatness defects manifest on line, buckling reorganizes the stress field in the pre- and post-bite areas. Comparison with flatness roll measurement requires this effect to be taken into account. A coupled Finite Element Method (FEM) approach is used here to compute stresses and strains in-bite as well as out-of-bite. The detection of buckled (non-flat) areas is demonstrated for a very thin strip cold rolling case. The model is then applied here to two questions, namely the impact on flatness of the heterogeneous temperature field and the effect of friction on optimal setting of a flatness actuator, Work Roll Bending.

[1]  A. K. Tieu,et al.  Modelling of the effect of friction on cold strip rolling , 2008 .

[2]  A. Hacquin Modelisation thermomecanique tridimensionnelle du laminage couplage bande/cylindres , 1996 .

[3]  Hamid Zahrouni,et al.  Computing finite rotations of shells by an asymptotic-numerical method , 1999 .

[4]  Zhengyi Jiang,et al.  Finite element simulation of cold rolling of thin strip , 2003 .

[5]  Sami Abdelkhalek,et al.  Latent and Manifested flatness predictions in thin strip cold rolling using a general rolling FEM model , 2011 .

[6]  Pierre Montmitonnet,et al.  Coupled approach for flatness prediction in cold rolling of thin strip , 2011 .

[7]  A. Bush,et al.  Stress levels for elastic buckling of rolled strip and plate , 2001 .

[8]  Cwj Cees Oomens,et al.  The Wrinkling of Thin Membranes: Part I—Theory , 1987 .

[9]  O. Pawelski,et al.  Die elastische Verformung der Walzen von Vierwalzengerüsten , 1976 .

[10]  A. Hacquin,et al.  Experimental validation of a rolling stand elastic deformation model , 1994 .

[11]  Pierre Montmitonnet,et al.  A three-dimensional semi-analytical model of rolling stand deformation with finite element validation , 1998 .

[12]  Hamid Zahrouni,et al.  Bifurcation points and bifurcated branches by an asymptotic numerical method and Padé approximants , 2004 .

[13]  S. BRODETSKY,et al.  Theory of Plates and Shells , 1941, Nature.

[14]  A. Hacquin,et al.  A steady state thermo-elastoviscoplastic finite element model of rolling with coupled thermo-elastic roll deformation , 1996 .

[15]  Pierre Montmitonnet,et al.  Modélisation numérique du flambage des plaques minces et applications au laminage , 2009 .

[16]  W. Wieser,et al.  Buckling phenomena related to rolling and levelling of sheet metal , 2000 .

[17]  S. M. Hwang,et al.  An Integrated FE Process Model for the Prediction of Strip Profile in Flat Rolling , 2003 .