What can biophotonics tell us about the 3D microstructure of articular cartilage?

Connective tissues such as articular cartilage have been the subject of study using novel optical techniques almost since the invention of polarized light microscopy (PLM). Early studies of polarized light micrographs were the main evidential basis for the establishment of quantitative models of articular cartilage collagen structure by Benninghoff and others. Even now, state of the art optical techniques including quantitative polarized light microscopy (qPLM), optical coherence tomography (OCT), polarization-sensitive optical coherence tomography (PS-OCT), second harmonic generation (SHG) microscopy, Fourier-transform infrared (FTIR) microscopy, Raman and optical hyperspectral reflectance and fluorescence imaging are providing new insights into articular cartilage structure from the nanoscale through to the mesoscale. New insights are promised by emerging modalities such as optical elastography. This short review highlights some key recent results from modern optical techniques.

[1]  Jukka S. Jurvelin,et al.  Nondestructive fluorescence-based quantification of threose-induced collagen cross-linking in bovine articular cartilage , 2012, Journal of biomedical optics.

[2]  Zhongmin Jin,et al.  Biotribology of articular cartilage--a review of the recent advances. , 2008, Medical engineering & physics.

[3]  X. Bi,et al.  A novel method for determination of collagen orientation in cartilage by Fourier transform infrared imaging spectroscopy (FT-IRIS). , 2005, Osteoarthritis and cartilage.

[4]  Julian Moger,et al.  Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy. , 2008, Journal of biomedical optics.

[5]  James G. Fujimoto,et al.  Monitoring osteoarthritis in the rat model using optical coherence tomography , 2005, IEEE Transactions on Medical Imaging.

[6]  H J Helminen,et al.  Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation. , 2009, Osteoarthritis and cartilage.

[7]  M S Laasanen,et al.  T(2) relaxation time mapping reveals age- and species-related diversity of collagen network architecture in articular cartilage. , 2006, Osteoarthritis and cartilage.

[8]  J. Dunlop,et al.  Polarized Raman Anisotropic Response of Collagen in Tendon: Towards 3D Orientation Mapping of Collagen in Tissues , 2013, PloS one.

[9]  J. Mansfield,et al.  A multi‐modal multiphoton investigation of microstructure in the deep zone and calcified cartilage , 2012, Journal of anatomy.

[10]  E B Hunziker,et al.  Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. , 2002, Osteoarthritis and cartilage.

[11]  Deepa Kasaragod,et al.  Conical scan polarization-sensitive optical coherence tomography. , 2014, Biomedical optics express.

[12]  Paul Campagnola,et al.  Second harmonic generation imaging microscopy: applications to diseases diagnostics. , 2011, Analytical chemistry.

[13]  Yang Xia,et al.  Quantitative Determination of Morphological and Territorial Structures of Articular Cartilage from Both Perpendicular and Parallel Sections by Polarized Light Microscopy , 2011, Connective tissue research.

[14]  J. Urban,et al.  The elastic network of articular cartilage: an immunohistochemical study of elastin fibres and microfibrils , 2010, Journal of anatomy.

[15]  Dekang Lin,et al.  Degradation of the cartilage collagen matrix associated with changes in chondrocytes in osteoarthrosis. Assessment by loss of background fluorescence and immunodetection of matrix components , 2001, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[16]  Silvia Caponi,et al.  Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering , 2014, Journal of The Royal Society Interface.

[17]  A. Carr,et al.  Imaging and modeling collagen architecture from the nano to micro scale. , 2013, Biomedical optics express.

[18]  G W Blunn,et al.  Three-dimensional collagen architecture in bovine articular cartilage. , 1991, The Journal of bone and joint surgery. British volume.

[19]  R Mendelsohn,et al.  FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage. , 2001, Biopolymers.

[20]  Sergei V. Gangnus,et al.  Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography. , 2006, Optics letters.

[21]  Patrick Smolinski,et al.  Optical Coherence Tomography Detection of Subclinical Traumatic Cartilage Injury , 2010, Journal of orthopaedic trauma.

[22]  Petro Julkunen,et al.  Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model. , 2007, Journal of biomechanics.

[23]  J. Clark,et al.  The organisation of collagen fibrils in the superficial zones of articular cartilage. , 1990, Journal of anatomy.

[24]  S. Yun,et al.  Confocal Brillouin microscopy for three-dimensional mechanical imaging. , 2007, Nature photonics.

[25]  Mario Ferretti,et al.  Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography. , 2007, Journal of biomedical optics.

[26]  Wen-Chuan Kuo,et al.  Diagnosis of Articular Cartilage Damage by Polarization Sensitive Optical Coherence Tomography and the Extracted Optical Properties , 2009 .

[27]  Marcel van Herk,et al.  In-situ imaging of articular cartilage of the first carpometacarpal joint using co-registered optical coherence tomography and computed tomography. , 2012, Journal of biomedical optics.

[28]  Alfred Benninghoff,et al.  Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion , 1925, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[29]  A. Benninghoff,et al.  Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[30]  Stephen J. Matcher,et al.  Experimental validation of an extended Jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography , 2012, Biomedical optics express.

[31]  S. S. Townsend,et al.  Phase Matching considerations in Second Harmonic Generation from tissues: Effects on emission directionality, conversion efficiency and observed morphology. , 2008, Optics communications.

[32]  H. Yura,et al.  Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[33]  M. Wolman,et al.  Polarized light microscopy in the study of the molecular structure of collagen and reticulin , 2004, Histochemistry.

[34]  Y. Xia,et al.  Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage. , 2001, Osteoarthritis and cartilage.

[35]  C. P. Winlove,et al.  Micromechanical response of articular cartilage to tensile load measured using nonlinear microscopy. , 2014, Acta biomaterialia.

[36]  B E Bouma,et al.  High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography. , 1999, The Journal of rheumatology.

[37]  Yang Xia,et al.  Quantitative zonal differentiation of articular cartilage by microscopic magnetic resonance imaging, polarized light microscopy, and Fourier‐transform infrared imaging , 2013, Microscopy research and technique.

[38]  Costas Pitris,et al.  High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery , 2005, Arthritis research & therapy.

[39]  Bruce J Tromberg,et al.  Nonlinear optical microscopy of articular cartilage. , 2005, Osteoarthritis and cartilage.

[40]  Freddie H Fu,et al.  Arthroscopic Microscopy of Articular Cartilage Using Optical Coherence Tomography , 2004, The American journal of sports medicine.

[41]  Zhiwei Huang,et al.  Early detection of biomolecular changes in disrupted porcine cartilage using polarized Raman spectroscopy. , 2011, Journal of biomedical optics.

[42]  Jukka S Jurvelin,et al.  Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage , 2008, Microscopy research and technique.

[43]  Chen-Yuan Dong,et al.  The discrimination of type I and type II collagen and the label-free imaging of engineered cartilage tissue. , 2010, Biomaterials.

[44]  S. Matcher,et al.  Novel optical imaging technique to determine the 3-D orientation of collagen fibers in cartilage: variable-incidence angle polarization-sensitive optical coherence tomography. , 2009, Osteoarthritis and cartilage.

[45]  Jun Zhang,et al.  Use of polarization-sensitive optical coherence tomography to determine the directional polarization sensitivity of articular cartilage and meniscus. , 2006, Journal of biomedical optics.

[46]  C. Moorehead All rights reserved , 1997 .

[47]  P. R. van Weeren,et al.  Arthroscopic optical coherence tomography provides detailed information on articular cartilage lesions in horses. , 2013, Veterinary journal.

[48]  T. Milner,et al.  Review of polarization sensitive optical coherence tomography and Stokes vector determination. , 2002, Journal of biomedical optics.

[49]  J. Schmitt,et al.  Measurement of optical properties of biological tissues by low-coherence reflectometry. , 1993, Applied optics.

[50]  S. Matcher,et al.  The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography , 2005 .

[51]  R Huiskes,et al.  Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. , 2004, Journal of biomechanics.

[52]  L. Fu,et al.  Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror. , 2006, Optics express.

[53]  M Deutsch,et al.  Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon. , 1986, Biophysical journal.

[54]  M. Hauta-Kasari,et al.  Optical spectral imaging of degeneration of articular cartilage. , 2010, Journal of biomedical optics.