Ferric Chloride and Bromide Complexes with Xanthine and Hypoxanthine

Abstract Complexes of the type Fe(LH)3LX2 (LH α xanthine or hypoxanthine; X α Cl or Br) were synthesized by refluxing 2:1 molar mixtures of LH and FeX3, in triethyl orthoformate-ethyl acetate for one week. Characterization studies suggest that the new complexes are hexacoordinated and monomeric, involving a cis-FeN4X2 arrangement of the terminal ligands around the Fe3 + ion. The hypoxanthine ligands probably bind via the N7 imidazole nitrogen to Fe(III). In the case of the xanthine complexes, the N7 and N9 imidazole nitrogens are considered as about equally likely to function as the binding site of the terminal neutral and monoanionic xanthine ligands.

[1]  N. Karayannis,et al.  HYPOXANTHINE COMPLEXES WITH FIRST ROW TRANSITION METAL PERCHLORATES , 1988 .

[2]  S. Grossman,et al.  Zirconium(IV) oxochloride complexes with xanthines and hypoxanthine , 1987 .

[3]  N. Karayannis,et al.  Adenine N(1)-oxide complexes with metal chlorides , 1987 .

[4]  W. Bensch,et al.  Coordination properties of hypoxanthine: Crystal structures, thermal analysis, IR, and electronic spectral studies of CU(II)(hypoxanthine) SO4·H2O and of ME(II)(hypoxanthine)SO4·5H2O (Me(II) CO(II), Ni(II)) , 1987 .

[5]  S. Grossman,et al.  Hypoxanthine, xanthine and theobromine complexes with palladium(II) and platinum(IV) chlorides , 1987 .

[6]  A. Beauchamp,et al.  Reactions of the methylmercury cation with xanthine and crystal structures of μ-(xanthinato-N3,N7,N9)tris(methylmercury(II)) nitrate and μ-(xanthinato-N1,N3,N7,N9)tetrakis(methylmercury(II)) nitrate , 1984 .

[7]  E. Buncel,et al.  Crystal structure of (theophyllinato)methylmercury(II) monohydrate , 1984 .

[8]  N. Karayannis,et al.  Vanadium(III) chloride complex with anionic guanine , 1984 .

[9]  N. Karayannis,et al.  Adducts of guanine with chromium(III), iron(III) and oxovanadium(IV) chlorides , 1984 .

[10]  T. Theophanides,et al.  Synthesis, structure and a fourier transform infrared study of Pt(II), Cu(II), and Mg(II) Complexes with xanthosine-5′-monophosphate , 1984 .

[11]  T. Theophanides,et al.  An FT-ir study of cis- and trans-dichlorodiammineplatinum(II) bound to inosine-5'-monophosphate , 1984 .

[12]  N. Karayannis,et al.  Guanine complexes with dysprosium(III), thorium(IV) and uranium(IV) chlorides , 1984 .

[13]  N. Karayannis,et al.  Purine and adenine adducts with ferric chloride , 1983 .

[14]  N. Karayannis,et al.  Vanadium(III) complexes with purine and adenine , 1983 .

[15]  N. Karayannis,et al.  Guanine complexes with first row transition metal perchlorates , 1983 .

[16]  N. Karayannis,et al.  Chromium(III) chloride complexes with purine and adenine , 1983 .

[17]  N. Karayannis,et al.  Xanthine, hypoxanthine and guanine copper(II) complexes , 1983 .

[18]  N. Karayannis,et al.  Aluminum chloride complexes with purine, adenine and guanine , 1982 .

[19]  M. Kastner,et al.  Structural correlation and metal ion movement in stable pentaammineruthenium(III)-hypoxanthine complexes , 1981 .

[20]  N. Karayannis,et al.  Characterization studies of adenine complexes with 3d metal perchlorates , 1981 .

[21]  C. Beetz,et al.  The low frequency vibrations of pyrimidine and purine bases , 1980 .

[22]  E. L. Amma,et al.  Reaction of PtCl42– with theophylline: X-ray crystal structures of bis(theophyllinium) tetrachloroplatinate(II) and theophyllinium trichlorotheophyllineplatinate(II) , 1979 .

[23]  S. Shirotake,et al.  Complexes between Nucleic Acid Bases and Bivalent Metal Ions. II. : Complexes formed by Guanine or Cytosine, and Zinc (II) , 1978 .

[24]  T. Kistenmacher,et al.  Reaction of coordinated purines. A facile, high yield synthetic route to N(7)-alkylated xanthines and hypoxanthines. The structure of [bis(dimethylglyoximato)(xanthinato)-(tri-n-butylphosphine)cobalt(III)] and the trans influence in cobalt(III) chemistry. , 1975, Journal of the American Chemical Society.

[25]  J. Driscoll,et al.  Nmr spectral characteristics of N‐H protons in purine derivatives , 1973 .

[26]  D. Lichtenberg,et al.  New Observations on Tautomerism and Ionization Processes in Hypoxanthines and 6‐Thiopurines , 1972 .

[27]  W. Geary The use of conductivity measurements in organic solvents for the characterisation of coordination compounds , 1971 .

[28]  E. Sletten Crystallographic studies of metal–nucleotide base complexes. II. Bis-(6-hydroxypurine)copper(II) chloride trihydrate , 1970 .

[29]  H. Mizuno,et al.  The Crystal and Molecular Structure of the Sodium Salt of Xanthine , 1969 .

[30]  M. Labes,et al.  Spin-free and spin-paired transition metal perchlorate complexes of 2,6-lutidine N-oxide , 1969 .

[31]  V. Hrehorovich,et al.  Xanthinuria, psoriasis and arthritis. , 1969, The American journal of medicine.

[32]  P. V. Leeuwen,et al.  Syntheses of coordination compounds by dehydration , 1967 .

[33]  R. Clark Metal-halogen stretching frequencies in inorganic complexes , 1965 .

[34]  R. Clark,et al.  The Far-Infrared Spectra of Metal-Halide Complexes of Pyridine and Related Ligands , 1965 .

[35]  I. Tinoco,et al.  Correlations in the Ultraviolet Spectra of the Purine and Pyrimidine Bases1 , 1965 .

[36]  R. Nyholm,et al.  238. Metal–pyrazine complexes. Part I. Compounds with cobalt(II) halides , 1962 .

[37]  W. Pfleiderer,et al.  Purine, II Zur Struktur des Xanthins und seiner N‐Methyl‐Derivate , 1961 .

[38]  H. Schläfer Quantentheoretische Untersuchung der Lichtabsorption der Ionen [Mn(H2O)4]2+und [Fe(H2O)6]3+. , 1955 .

[39]  S. Mason Purine studies. Part II. The ultra-violet absorption spectra of some mono- and poly-substituted purines , 1954 .