All-electron density functional theory and time-dependent density functional theory with high-order finite elements.

We present for static density functional theory and time-dependent density functional theory calculations an all-electron method which employs high-order hierarchical finite-element bases. Our mesh generation scheme, in which structured atomic meshes are merged to an unstructured molecular mesh, allows a highly nonuniform discretization of the space. Thus it is possible to represent the core and valence states using the same discretization scheme, i.e., no pseudopotentials or similar treatments are required. The nonuniform discretization also allows the use of large simulation cells, and therefore avoids any boundary effects.

[1]  A. Bandrauk,et al.  Three‐dimensional Cartesian finite element method for the time dependent Schrödinger equation of molecules in laser fields , 1995 .

[2]  J. Shewchuk What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures , 2002 .

[3]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. II. Operators for fast iterative diagonalization. , 1991, Physical review. B, Condensed matter.

[4]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[5]  David Eppstein,et al.  MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .

[6]  Herbert Edelsbrunner,et al.  Incremental topological flipping works for regular triangulations , 1992, SCG '92.

[7]  E. Koch,et al.  Optical absorption of benzene vapour for photon energies from 6 eV to 35 eV , 1972 .

[8]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[9]  William H. Frey,et al.  An apporach to automatic three‐dimensional finite element mesh generation , 1985 .

[10]  D. Du,et al.  Computing in Euclidean Geometry , 1995 .

[11]  J. Shewchuk,et al.  Delaunay refinement mesh generation , 1997 .

[12]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[13]  Lihua Shen,et al.  Finite element method for solving Kohn-Sham equations based on self-adaptive tetrahedral mesh , 2008 .

[14]  Excited states from time-dependent density functional theory , 2007, cond-mat/0703590.

[15]  Levin,et al.  Finite-element solution of the Schrödinger equation for the helium ground state. , 1985, Physical review. A, General physics.

[16]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[17]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[18]  P. F. Batcho SPECTRALLY ACCURATE NUMERICAL SOLUTION OF THE SINGLE-PARTICLE SCHRODINGER EQUATION , 1998 .

[19]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[20]  E. Fermi Sopra lo Spostamento per Pressione delle Righe Elevate delle Serie Spettrali , 1934 .

[21]  Richard D. Hornung,et al.  Finite element approach for density functional theory calculations on locally-refined meshes , 2006, J. Comput. Phys..

[22]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[23]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[24]  P F Batcho Computational method for general multicenter electronic structure calculations. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[26]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[27]  Mark E. Casida,et al.  Time-Dependent Density Functional Response Theory of Molecular Systems: Theory, Computational Methods, and Functionals , 1996 .

[28]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[29]  J. Pask,et al.  Finite element methods in ab initio electronic structure calculations , 2005 .

[30]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[31]  Leonard Kleinman,et al.  New Method for Calculating Wave Functions in Crystals and Molecules , 1959 .

[32]  M. Tsukada,et al.  Electronic-structure calculations based on the finite-element method. , 1995, Physical review. B, Condensed matter.

[33]  Á. Rubio,et al.  octopus: a first-principles tool for excited electron-ion dynamics. , 2003 .

[34]  D. Chong Recent Advances in Density Functional Methods Part III , 2002 .

[35]  White,et al.  Finite-element method for electronic structure. , 1989, Physical review. B, Condensed matter.

[36]  Bertsch,et al.  Time-dependent local-density approximation in real time. , 1996, Physical review. B, Condensed matter.

[37]  F. Nogueira,et al.  A primer in density functional theory , 2003 .

[38]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[39]  Tomoya Ono,et al.  Timesaving Double-Grid Method for Real-Space Electronic-Structure Calculations , 1999 .

[40]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[41]  M. Turner Stiffness and Deflection Analysis of Complex Structures , 1956 .

[42]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[43]  Gene H. Golub,et al.  Matrix computations , 1983 .

[44]  H. Saunders Book Reviews : NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS K.-J. Bathe and E.L. Wilson Prentice-Hall, Inc, Englewood Cliffs, NJ , 1978 .

[45]  M. E. Casida Time-Dependent Density Functional Response Theory for Molecules , 1995 .