Literal Projection for First-Order Logic
暂无分享,去创建一个
[1] Neil V. Murray,et al. Tableaux, Path Dissolution, and Decomposable Negation Normal Form for Knowledge Compilation , 2003, TABLEAUX.
[2] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..
[3] Roy Dyckhoff. Automated Reasoning with Analytic Tableaux and Related Methods , 2000, Lecture Notes in Computer Science.
[4] W. Ackermann. Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .
[5] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..
[6] Kenneth L. McMillan,et al. Applying SAT Methods in Unbounded Symbolic Model Checking , 2002, CAV.
[7] Dov M. Gabbay,et al. Second-Order Quantifier Elimination - Foundations, Computational Aspects and Applications , 2008, Studies in logic : Mathematical logic and foundations.
[8] Frank Wolter,et al. Semi-qualitative Reasoning about Distances: A Preliminary Report , 2000, JELIA.
[9] Christoph Wernhard. Automated deduction for projection elimination , 2009 .
[10] Christoph Wernhard,et al. Semantic Knowledge Partitioning , 2004, JELIA.
[11] Dov M. Gabbay,et al. Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.
[12] Andrzej Szalas. On the Correspondence between Modal and Classical Logic: An Automated Approach , 1993, J. Log. Comput..
[13] Alan Robinson,et al. The Inverse Method , 2001, Handbook of Automated Reasoning.
[14] Adnan Darwiche,et al. DPLL with a Trace: From SAT to Knowledge Compilation , 2005, IJCAI.
[15] Josef Urban,et al. MPTP 0.2: Design, Implementation, and Initial Experiments , 2006, Journal of Automated Reasoning.
[16] Carsten Lutz,et al. Did I Damage My Ontology? A Case for Conservative Extensions in Description Logics , 2006, KR.
[17] Patrick Doherty,et al. Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.
[18] Hans Hahn. Einführung in die Mathematische Logik , 1932 .
[19] Adnan Darwiche,et al. Decomposable negation normal form , 2001, JACM.