On multivariate quantiles under partial orders

This paper focuses on generalizing quantiles from the ordering point of view. We propose the concept of partial quantiles, which are based on a given partial order. We establish that partial quantiles are equivariant under order-preserving transformations of the data, robust to outliers, characterize the probability distribution if the partial order is sufficiently rich, generalize the concept of efficient frontier, and can measure dispersion from the partial order perspective. We also study several statistical aspects of partial quantiles. We provide estimators, associated rates of convergence, and asymptotic distributions that hold uniformly over a continuum of quantile indices. Furthermore, we provide procedures that can restore monotonicity properties that might have been disturbed by estimation error, establish computational complexity bounds, and point out a concentration of measure phenomenon (the latter under independence and the componentwise natural order). Finally, we illustrate the concepts by discussing several theoretical examples and simulations. Empirical applications to compare intake nutrients within diets, to evaluate the performance of investment funds, and to study the impact of policies on tobacco awareness are also presented to illustrate the concepts and their use.

[1]  R. Kalra,et al.  Mutual Fund Performance: An Empirical Decomposition into Stock-Picking Talent, Style, Transactions Costs, and Expenses , 2001 .

[2]  James L. Powell,et al.  Symmetrically Trimmed Least Squares Estimation For Tobit Models , 1986 .

[3]  A. Carriquiry,et al.  A Semiparametric Transformation Approach to Estimating Usual Daily Intake Distributions , 1996 .

[4]  Ying Wei Discussion of "Multivariate quantiles and multiple-output regression quantiles: From $L_1$ optimization to halfspace depth" , 2010, 1002.4494.

[5]  Ravi Jagannathan,et al.  Assessing the Market Timing Performance of Managed Portfolios , 1985 .

[6]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  K. Alexander,et al.  Rates of growth and sample moduli for weighted empirical processes indexed by sets , 1987 .

[8]  D. Mason,et al.  Generalized quantile processes , 1992 .

[9]  Holger Dette,et al.  Non‐crossing non‐parametric estimates of quantile curves , 2008 .

[10]  Martin Grötschel,et al.  Geometric Methods in Combinatorial Optimization , 1984 .

[11]  R. Womersley Censored Discrete Linear $l_1 $ Approximation , 1986 .

[12]  B. Flay,et al.  The television school and family smoking prevention and cessation project. 1. Theoretical basis and program development. , 1988, Preventive medicine.

[13]  I. Mizera,et al.  Discussion of "Multivariate quantiles and multiple-output regression quantiles: From $L_1$ optimization to halfspace depth" , 2010, 1002.4509.

[14]  Linglong Kong,et al.  Quantile tomography: using quantiles with multivariate data , 2008, Statistica Sinica.

[15]  J. Powell,et al.  Least absolute deviations estimation for the censored regression model , 1984 .

[16]  I. Molchanov Theory of Random Sets , 2005 .

[17]  Robert Serfling,et al.  Quantile functions for multivariate analysis: approaches and applications , 2002 .

[18]  J. Powell,et al.  ESTIMATION OF MONOTONIC REGRESSION MODELS UNDER QUANTILE RESTRICTIONS , 1988 .

[19]  A theorem of Cramér and Wold revisited , 1983 .

[20]  V. Koltchinskii,et al.  Concentration inequalities and asymptotic results for ratio type empirical processes , 2006, math/0606788.

[21]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[22]  V. Chernozhukov,et al.  Massachusetts Institute of Technology Department of Economics Working Paper Series Improving Point and Interval Estimates of Monotone Functions by Rearrangement Improving Point and Interval Estimates of Monotone Functions by Rearrangement , 2022 .

[23]  D. Hedeker,et al.  Random effects probit and logistic regression models for three-level data. , 1997, Biometrics.

[24]  Stephen Portnoy,et al.  On monotonicity of regression quantile functions , 2008 .

[25]  A. Sitaram Fourier analysis and determining sets for Radon measures on $\mathbf{R}^{n}$ , 1984 .

[26]  A. W. van der Vaart,et al.  Uniform Central Limit Theorems , 2001 .

[27]  George G. Lorentz,et al.  An Inequality for Rearrangements , 1953 .

[28]  Russ Wermers,et al.  Mutual Fund Performance: An Empirical Decomposition into Stock-Picking Talent, Style, Transactions Costs, and Expenses , 2000 .

[29]  V. Chernozhukov,et al.  Estimation and Confidence Regions for Parameter Sets in Econometric Models , 2007 .

[30]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[31]  S. Bochner Bounded Analytic Functions in Several Variables and Multiple Laplace Integrals , 1937 .

[32]  V. Barnett The Ordering of Multivariate Data , 1976 .

[33]  B. Chakraborty On multivariate quantile regression , 2003 .

[34]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[35]  Measures of Downside Risk and Mutual Fund Flows , 2009 .

[36]  D. Pollard,et al.  Cube Root Asymptotics , 1990 .

[37]  M. Talagrand The Generic chaining : upper and lower bounds of stochastic processes , 2005 .

[38]  V. V. Buldygin,et al.  Brunn-Minkowski inequality , 2000 .

[39]  R. Serfling Equivariance and invariance properties of multivariate quantile and related functions, and the role of standardisation , 2010 .

[40]  Stephen Portnoy,et al.  Correction to Censored Regression Quantiles by S. Portnoy, 98 (2003), 1001–1012 , 2006 .

[41]  V. Chernozhukov,et al.  QUANTILE AND PROBABILITY CURVES WITHOUT CROSSING , 2007, 0704.3649.

[42]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[43]  S. Vempala Geometric Random Walks: a Survey , 2007 .

[44]  D. Paindaveine,et al.  Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth , 2010, 1002.4486.

[45]  A. Di Bucchianico,et al.  Smallest nonparametric tolerance regions , 2001 .

[46]  James L. Powell,et al.  Efficient Estimation of Linear and Type I Censored Regression Models Under Conditional Quantile Restrictions , 1990, Econometric Theory.

[47]  D. Hedeker,et al.  The television, school, and family smoking prevention and cessation project. VIII. Student outcomes and mediating variables. , 1995, Preventive medicine.

[48]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[49]  János Pach,et al.  Combinatorial and Computational Geometry , 2011 .

[50]  Ralph L. Keeney,et al.  Decisions with multiple objectives: preferences and value tradeoffs , 1976 .

[51]  Santosh S. Vempala,et al.  Simulated Annealing for Convex Optimization , 2004 .

[52]  Qiwei Yao,et al.  Set-Indexed Conditional Empirical and Quantile Processes Based on Dependent Data , 2002 .

[53]  Stephen Portnoy,et al.  Censored Regression Quantiles , 2003 .

[54]  Jinyong Hahn,et al.  An Alternative Estimator for the Censored Quantile Regression Model , 1998 .

[55]  Santosh S. Vempala,et al.  Fast Algorithms for Logconcave Functions: Sampling, Rounding, Integration and Optimization , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[56]  J. De Gooijer,et al.  On the U-Th Geometric Conditional Quantile , 2004 .

[57]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[58]  P. Chaudhuri On a geometric notion of quantiles for multivariate data , 1996 .

[59]  A. Sitaram,et al.  Determining sets for measures on $R^{n}$ , 1982 .

[60]  D. Pollard Uniform ratio limit theorems for empirical processes , 1995 .