Capacity-Achieving Spatially Coupled Sparse Superposition Codes With AMP Decoding

Sparse superposition codes, also referred to as sparse regression codes (SPARCs), are a class of codes for efficient communication over the AWGN channel at rates approaching the channel capacity. In a standard SPARC, codewords are sparse linear combinations of columns of an i.i.d. Gaussian design matrix, while in a spatially coupled SPARC the design matrix has a block-wise structure, where the variance of the Gaussian entries can be varied across blocks. A well-designed spatial coupling structure can significantly enhance the error performance of iterative decoding algorithms such as Approximate Message Passing (AMP). In this paper, we obtain a non-asymptotic bound on the probability of error of spatially coupled SPARCs with AMP decoding. Applying this bound to a simple band-diagonal design matrix, we prove that spatially coupled SPARCs with AMP decoding achieve the capacity of the AWGN channel. The bound also highlights how the decay of error probability depends on each design parameter of the spatially coupled SPARC. An attractive feature of AMP decoding is that its asymptotic mean squared error (MSE) can be predicted via a deterministic recursion called state evolution. Our result provides the first proof that the MSE concentrates on the state evolution prediction for spatially coupled designs. Combined with the state evolution prediction, this result implies that spatially coupled SPARCs with the proposed band-diagonal design are capacity-achieving. Using the proof technique used to establish the main result, we also obtain a concentration inequality for the MSE of AMP applied to compressed sensing with spatially coupled design matrices. Finally, we provide numerical simulation results that demonstrate the finite length error performance of spatially coupled SPARCs. The performance is compared with coded modulation schemes that use LDPC codes from the DVB-S2 standard.

[1]  Florent Krzakala,et al.  Approximate message-passing with spatially coupled structured operators, with applications to compressed sensing and sparse superposition codes , 2013, 1312.1740.

[2]  Arian Maleki,et al.  Optimality of large MIMO detection via approximate message passing , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[3]  Ramji Venkataramanan,et al.  The Error Probability of Sparse Superposition Codes With Approximate Message Passing Decoding , 2017, IEEE Transactions on Information Theory.

[4]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[5]  Jelena Bradic,et al.  Robustness in sparse high-dimensional linear models: Relative efficiency and robust approximate message passing , 2016 .

[6]  Ramji Venkataramanan,et al.  Spatially Coupled Sparse Regression Codes: Design and State Evolution Analysis , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[7]  Andrea Montanari,et al.  Information-theoretically optimal sparse PCA , 2014, 2014 IEEE International Symposium on Information Theory.

[8]  Ramji Venkataramanan,et al.  Techniques for Improving the Finite Length Performance of Sparse Superposition Codes , 2017, IEEE Transactions on Communications.

[9]  Ramji Venkataramanan,et al.  Finite Sample Analysis of Approximate Message Passing Algorithms , 2016, IEEE Transactions on Information Theory.

[10]  Nicolas Macris,et al.  Threshold Saturation for Spatially Coupled LDPC and LDGM Codes on BMS Channels , 2013, IEEE Transactions on Information Theory.

[11]  Nicolas Macris,et al.  Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula , 2016, NIPS.

[12]  Sekhar Tatikonda,et al.  Sparse Regression Codes , 2019, Found. Trends Commun. Inf. Theory.

[13]  Bertrand Le Gal,et al.  Fast Simulation and Prototyping with AFF3CT , 2017 .

[14]  Sundeep Rangan,et al.  Iterative estimation of constrained rank-one matrices in noise , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[15]  Andrea Montanari,et al.  The LASSO Risk for Gaussian Matrices , 2010, IEEE Transactions on Information Theory.

[16]  Florent Krzakala,et al.  Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices , 2012, ArXiv.

[17]  Volkan Cevher,et al.  Bilinear Generalized Approximate Message Passing—Part II: Applications , 2014, IEEE Transactions on Signal Processing.

[18]  Henry D. Pfister,et al.  The effect of spatial coupling on compressive sensing , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[19]  Florent Krzakala,et al.  Approximate Message-Passing Decoder and Capacity Achieving Sparse Superposition Codes , 2015, IEEE Transactions on Information Theory.

[20]  Ramji Venkataramanan,et al.  Capacity-Achieving Sparse Superposition Codes via Approximate Message Passing Decoding , 2015, IEEE Transactions on Information Theory.

[21]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, 2010 IEEE International Symposium on Information Theory.

[22]  Ramji Venkataramanan,et al.  Modulated Sparse Superposition Codes for the Complex AWGN Channel , 2020, IEEE Transactions on Information Theory.

[23]  Florent Krzakala,et al.  Statistical physics-based reconstruction in compressed sensing , 2011, ArXiv.

[24]  Andrea Montanari,et al.  Estimation of low-rank matrices via approximate message passing , 2017, The Annals of Statistics.

[25]  Sanghee Cho,et al.  APPROXIMATE ITERATIVE BAYES OPTIMAL ESTIMATES FOR HIGH-RATE SPARSE SUPERPOSITION CODES , 2013 .

[26]  Michael Lentmaier,et al.  Iterative Decoding Threshold Analysis for LDPC Convolutional Codes , 2010, IEEE Transactions on Information Theory.

[27]  Giuseppe Caire,et al.  SPARCs and AMP for Unsourced Random Access , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[28]  Rüdiger L. Urbanke,et al.  Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC , 2010, IEEE Transactions on Information Theory.

[29]  Florent Krzakala,et al.  Phase Transitions and Sample Complexity in Bayes-Optimal Matrix Factorization , 2014, IEEE Transactions on Information Theory.

[30]  Henry D. Pfister,et al.  A Simple Proof of Maxwell Saturation for Coupled Scalar Recursions , 2013, IEEE Transactions on Information Theory.

[31]  Andrew R. Barron,et al.  Fast Sparse Superposition Codes Have Near Exponential Error Probability for $R<{\cal C}$ , 2014, IEEE Transactions on Information Theory.

[32]  Adel Javanmard,et al.  State Evolution for General Approximate Message Passing Algorithms, with Applications to Spatial Coupling , 2012, ArXiv.

[33]  Li Ping,et al.  Clipping Can Improve the Performance of Spatially Coupled Sparse Superposition Codes , 2017, IEEE Communications Letters.

[34]  Sundeep Rangan,et al.  Compressive Phase Retrieval via Generalized Approximate Message Passing , 2014, IEEE Transactions on Signal Processing.

[35]  Nicolas Macris,et al.  Proof of threshold saturation for spatially coupled sparse superposition codes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[36]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[37]  Sundeep Rangan,et al.  Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[38]  Martin J. Wainwright,et al.  High-Dimensional Statistics , 2019 .

[39]  Rüdiger L. Urbanke,et al.  Spatially coupled ensembles universally achieve capacity under belief propagation , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[40]  Gábor Lugosi,et al.  Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.

[41]  Nicolas Macris,et al.  Universal Sparse Superposition Codes With Spatial Coupling and GAMP Decoding , 2017, IEEE Transactions on Information Theory.

[42]  Kamil Sh. Zigangirov,et al.  Time-varying periodic convolutional codes with low-density parity-check matrix , 1999, IEEE Trans. Inf. Theory.

[43]  Andrea Montanari,et al.  High dimensional robust M-estimation: asymptotic variance via approximate message passing , 2013, Probability Theory and Related Fields.

[44]  Michael Lentmaier,et al.  Spatially Coupled LDPC Codes Constructed From Protographs , 2014, IEEE Transactions on Information Theory.

[45]  Adel Javanmard,et al.  Information-Theoretically Optimal Compressed Sensing via Spatial Coupling and Approximate Message Passing , 2011, IEEE Transactions on Information Theory.

[46]  Andrew R. Barron,et al.  Least squares superposition codes of moderate dictionary size, reliable at rates up to capacity , 2010, 2010 IEEE International Symposium on Information Theory.