Pace independent mobile gait biometrics

Accelerometers embedded in mobile devices have shown great potential for non-obtrusive gait biometrics by directly capturing a user's characteristic locomotion. Although gait analysis using these sensors has achieved highly accurate authentication and identification performance under controlled experimental settings, the robustness of such algorithms in the presence of assorted variations typical in real world scenarios remains a major challenge. In this paper, we propose a novel pace independent mobile gait biometrics algorithm that is insensitive to variability in walking speed. Our approach also exploits recent advances in invariant mobile gait representation to be independent of sensor rotation. Performance evaluations on a realistic mobile gait dataset containing 51 subjects confirm the merits of the proposed algorithm toward practical mobile gait authentication.

[1]  Sharath Pankanti,et al.  Biometrics: a grand challenge , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[2]  Mohammad Omar Derawi,et al.  Accelerometer-Based Gait Analysis , A survey , 2010 .

[3]  Mark S. Nixon,et al.  Exploratory factor analysis of gait recognition , 2008, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition.

[4]  Liu Ming,et al.  A Wearable Acceleration Sensor System for Gait Recognition , 2007, 2007 2nd IEEE Conference on Industrial Electronics and Applications.

[5]  Shie Mannor,et al.  Time Series Analysis Using Geometric Template Matching , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Gonzalo Bailador,et al.  Speed-Independent Gait Identification for Mobile Devices , 2012, Int. J. Pattern Recognit. Artif. Intell..

[7]  Saeid Sanei,et al.  A comprehensive review of past and present vision-based techniques for gait recognition , 2013, Multimedia Tools and Applications.

[8]  Thang Hoang,et al.  Gait identification using accelerometer on mobile phone , 2012, 2012 International Conference on Control, Automation and Information Sciences (ICCAIS).

[9]  Kjetil Holien,et al.  Gait recognition under non-standard circumstances , 2008 .

[10]  Marios Savvides,et al.  Gait-ID on the move: Pace independent human identification using cell phone accelerometer dynamics , 2012, 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS).

[11]  Yasushi Makihara,et al.  Orientation-Compensative Signal Registration for Owner Authentication Using an Accelerometer , 2014, IEICE Trans. Inf. Syst..

[12]  Koichi Shinoda,et al.  Robust Gait-Based Person Identification against Walking Speed Variations , 2012, IEICE Trans. Inf. Syst..

[13]  Gerhard Tröster,et al.  Quantifying Gait Similarity: User Authentication and Real-World Challenge , 2009, ICB.

[14]  Gary M. Weiss,et al.  Cell phone-based biometric identification , 2010, 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS).

[15]  Yuting Zhang,et al.  Accelerometer-based gait recognition via voting by signature points , 2009 .

[16]  Yu Zhong,et al.  Sensor orientation invariant mobile gait biometrics , 2014, IEEE International Joint Conference on Biometrics.

[17]  Steffen Leonhardt,et al.  Automatic Step Detection in the Accelerometer Signal , 2007, BSN.

[18]  Patrick Kenny,et al.  Support vector machines versus fast scoring in the low-dimensional total variability space for speaker verification , 2009, INTERSPEECH.

[19]  Patrick Bours,et al.  Improved Cycle Detection for Accelerometer Based Gait Authentication , 2010, 2010 Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing.

[20]  Einar Snekkenes,et al.  Improved Gait Recognition Performance Using Cycle Matching , 2010, 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops.

[21]  Kenichi Yamazaki,et al.  Gait analyzer based on a cell phone with a single three-axis accelerometer , 2006, Mobile HCI.

[22]  Dimitrios Hatzinakos,et al.  Gait recognition using dynamic time warping , 2004, IEEE 6th Workshop on Multimedia Signal Processing, 2004..

[23]  Christoph Busch,et al.  Unobtrusive User-Authentication on Mobile Phones Using Biometric Gait Recognition , 2010, 2010 Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing.

[24]  Jacob Scharcanski,et al.  Signal and Image Processing for Biometrics , 2014 .

[25]  Yasushi Makihara,et al.  The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication , 2014, Pattern Recognit..

[26]  S.M. Seitz,et al.  Detecting irregularities in cyclic motion , 1994, Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects.

[27]  Christoph Busch,et al.  Scenario test of accelerometer-based biometric gait recognition , 2011, 2011 Third International Workshop on Security and Communication Networks (IWSCN).

[28]  René Mayrhofer,et al.  An Analysis of Different Approaches to Gait Recognition Using Cell Phone Based Accelerometers , 2013, MoMM '13.

[29]  S. Sprager,et al.  A cumulant-based method for gait identification using accelerometer data with principal component analysis and support vector machine , 2009 .

[30]  Kirsi Helkala,et al.  Biometric Gait Authentication Using Accelerometer Sensor , 2006, J. Comput..

[31]  Sudeep Sarkar,et al.  The humanID gait challenge problem: data sets, performance, and analysis , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Patrick Kenny,et al.  Front-End Factor Analysis for Speaker Verification , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[33]  Kôiti Hasida,et al.  Rotation invariant feature extraction from 3-D acceleration signals , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[34]  Yunhong Wang,et al.  Cross-View Gait Recognition with Short Probe Sequences: from View Transformation Model to View-Independent stance-Independent Identity Vector , 2013, Int. J. Pattern Recognit. Artif. Intell..

[35]  Tao Liu,et al.  Gait Analysis Using Wearable Sensors , 2012, Sensors.

[36]  Aaron F. Bobick,et al.  Performance Analysis of Time-Distance Gait Parameters under Different Speeds , 2003, AVBPA.

[37]  Yasushi Makihara,et al.  Phase Estimation of a Single Quasi-Periodic Signal , 2014, IEEE Transactions on Signal Processing.

[38]  Mark S. Nixon,et al.  Advances in automatic gait recognition , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[39]  Yasushi Makihara,et al.  Gait recognition by fluctuations , 2014, Comput. Vis. Image Underst..

[40]  Yasushi Makihara,et al.  Speed-Invariant Gait Recognition , 2014 .

[41]  Heikki Ailisto,et al.  Identifying users of portable devices from gait pattern with accelerometers , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[42]  Mikko Lindholm,et al.  Identifying people from gait pattern with accelerometers , 2005, SPIE Defense + Commercial Sensing.