Simultaneous positioning and orientation of a single nano-object by flow control: theory and simulations

In this paper, we theoretically describe a method to simultaneously control both the position and orientation of single nano-objects in fluids by precisely controlling the flow around them. We develop and simulate a control law that uses electro-osmotic flow (EOF) actuation to translate and rotate rigid nano-objects in two spatial dimensions. Using EOF to control nano-objects offers advantages as compared to other approaches: a wide class of objects can be manipulated (no magnetic or electric dipole moments are needed), the object can be controlled over a long range (>100 μm) with sub-micrometer accuracy, and control may be achieved with simple polydimethylsiloxane (PDMS) devices. We demonstrate the theory and numerical solutions that will enable deterministic control of the position and orientation of a nano-object in solution, which can be used, for example, to integrate nanostructures in circuits and orient sensors to probe living cells.

[1]  Daniel T. Gillespie,et al.  Fluctuation and dissipation in Brownian motion , 1993 .

[2]  H. Callen,et al.  Irreversibility and Generalized Noise , 1951 .

[3]  Samarendra K. Mohanty,et al.  Controlled rotation of biological microscopic objects using optical line tweezers , 2003, Biotechnology Letters.

[4]  M. Nobili,et al.  Brownian Motion of an Ellipsoid , 2006, Science.

[5]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[6]  Howard Brenner,et al.  Effect of finite boundaries on the Stokes resistance of an arbitrary particle , 1962, Journal of Fluid Mechanics.

[7]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[8]  F. Bretherton The motion of rigid particles in a shear flow at low Reynolds number , 1962, Journal of Fluid Mechanics.

[9]  Andrei S. Dukhin,et al.  Fundamentals of Interface and Colloid Science , 2010 .

[10]  Fuqiang Liu,et al.  Nafion/PTFE Composite Membranes for Fuel Cell Applications , 2003 .

[11]  Hsueh-Chia Chang,et al.  Manipulation and characterization of red blood cells with alternating current fields in microdevices , 2003, Electrophoresis.

[12]  Edo Waks,et al.  Manipulating quantum dots to nanometer precision by control of flow. , 2010, Nano letters.

[13]  Lixin Dong,et al.  Artificial bacterial flagella: Fabrication and magnetic control , 2009 .

[14]  J. Padding,et al.  Translational and rotational friction on a colloidal rod near a wall. , 2009, The Journal of chemical physics.

[15]  M.D. Armani,et al.  Using feedback control of microflows to independently steer multiple particles , 2006, Journal of Microelectromechanical Systems.

[16]  P. A. Smith,et al.  Electric-field assisted assembly and alignment of metallic nanowires , 2000 .

[17]  Johannes Courtial,et al.  Optically controlled three-dimensional rotation of microscopic objects , 2003 .

[18]  K Bergman,et al.  Characterization of photodamage to Escherichia coli in optical traps. , 1999, Biophysical journal.

[19]  Peidong Yang,et al.  Microchannel Networks for Nanowire Patterning , 2000 .

[20]  F S Pavone,et al.  Three-dimensional magneto-optic trap for micro-object manipulation. , 2001, Optics letters.

[21]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[22]  G Medoro,et al.  Levitation and movement of human tumor cells using a printed circuit board device based on software-controlled dielectrophoresis. , 2003, Biotechnology and bioengineering.

[23]  Michelle D. Wang,et al.  Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. , 2004, Physical review letters.

[24]  Peidong Yang,et al.  Dynamic manipulation and separation of individual semiconducting and metallic nanowires. , 2008, Nature photonics.

[25]  Peidong Yang,et al.  Semiconductor nanowires for subwavelength photonics integration. , 2005, The journal of physical chemistry. B.

[26]  L. M. Sonneborn,et al.  The Bang-Bang Principle for Linear Control Systems , 1964 .

[27]  A. Einstein On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .

[28]  脇屋 正一,et al.  J. Happel and H. Brenner: Low Reynolds Number Hydrodynamics, Prentice-Hall, 1965, 553頁, 16×23cm, 6,780円. , 1969 .

[29]  J. Santiago,et al.  Rotational electrophoresis of striped metallic microrods. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[31]  R. Parsons Fundamentals of interface and colloid science, volume II. Solid-liquid interfaces , 1997 .

[32]  H. Brenner Orientation-space boundary layers in problems of rotational diffusion and convection at large rotary Péclet numbers , 1970 .

[33]  Howard Brenner,et al.  Coupling between the translational and rotational brownian motions of rigid particles of arbitrary shape: II. General theory , 1967 .

[34]  H. Brenner Coupling between the translational and rotational brownian motions of rigid particles of arbitrary shape I. Helicoidally isotropic particles , 1965 .

[35]  M. Bazant,et al.  Breaking symmetries in induced-charge electro-osmosis and electrophoresis , 2005, Journal of Fluid Mechanics.

[36]  Christopher S. Chen,et al.  Biological applications of multifunctional magnetic nanowires (invited) , 2003 .

[37]  D. Gillespie The mathematics of Brownian motion and Johnson noise , 1996 .

[38]  Bene Poelsema,et al.  Quantitative analysis of gold nanorod alignment after electric field-assisted deposition. , 2009, Nano letters.

[39]  O. Velev,et al.  Dielectrophoretic Assembly of Electrically Functional Microwires from Nanoparticle Suspensions , 2001, Science.

[40]  Sourobh Raychaudhuri,et al.  Precise semiconductor nanowire placement through dielectrophoresis. , 2009, Nano letters.

[41]  W Sibbett,et al.  Controlled Rotation of Optically Trapped Microscopic Particles , 2001, Science.

[42]  G. B. Jeffery,et al.  The Motion of Two Spheres in a Viscous Fluid , 1926 .

[43]  Joseph S. Tenny,et al.  Numerical Simulations in Electro-osmotic Flow , 2004 .

[44]  Eric F Darve,et al.  Hydrodynamic interactions in the induced-charge electrophoresis of colloidal rod dispersions , 2005, Journal of Fluid Mechanics.

[45]  Miles J Padgett,et al.  Rotational control within optical tweezers by use of a rotating aperture. , 2002, Optics letters.

[46]  A. S. Dukhin,et al.  Pair interaction of particles in electric field. 1. Features of hydrodynamic interaction of polarized particles , 1986 .

[47]  Nader Engheta,et al.  Electric tweezers: Experimental study of positive dielectrophoresis-based positioning and orientation of a nanorod , 2007 .

[48]  Daniel H. Reich,et al.  Biological Applications of Multifunctional Magnetic Nanowires , 2007 .

[49]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[50]  Howard H. Hu,et al.  Numerical simulation of electroosmotic flow. , 1998, Analytical chemistry.

[51]  G. B. Jeffery The motion of ellipsoidal particles immersed in a viscous fluid , 1922 .

[52]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[53]  Induced-charge electrophoresis of nonspherical particles , 2005 .

[54]  Howard Brenner,et al.  The Stokes resistance of an arbitrary particleIV Arbitrary fields of flow , 1964 .

[55]  Benjamin Shapiro,et al.  Arbitrary steering of multiple particles independently in an electro-osmotically driven microfluidic system , 2006, IEEE Transactions on Control Systems Technology.

[56]  Christos Bergeles,et al.  Characterizing the swimming properties of artificial bacterial flagella. , 2009, Nano letters.

[57]  Howard Brenner,et al.  The Stokes resistance of an arbitrary particle , 1964 .