Anisotropic Artificial Impedance Surfaces

Anisotropic artificial impedance surfaces are a group of planar materials that can be modeled by the tensor impedance boundary condition. This boundary condition relates the electric and magnetic field components on a surface using a 2x2 tensor. The advantage of using the tensor impedance boundary condition, and by extension anisotropic artificial impedance surfaces, is that the method allows large and complex structures to be modeled quickly and accurately using a planar boundary condition. This thesis presents the theory of anisotropic impedance surfaces and multiple applications. Anisotropic impedance surfaces are a generalization of scalar impedance surfaces. Unlike the scalar version, anisotropic impedance surfaces have material properties that are dependent on the polarization and wave vector of electromagnetic radiation that interacts with the surface. This allows anisotropic impedance surfaces to be used for applications that scalar surfaces cannot achieve. Three of these applications are presented in this thesis. The first is an anisotropic surface wave waveguide which allows propagation in one direction, but passes radiation in the orthogonal direction without reflection. The second application is a surface wave beam shifter which splits a surface wave beam in two directions and reduces the scattering from an object placed on the surface. The third application is a patterned surface which can alter the scattered radiation pattern of a rectangular shape. For each application, anisotropic impedance surfaces are constructed using periodic unit cells. These unit cells are designed to give the desired surface impedance characteristics by modifying a patterned metallic patch on a grounded dielectric substrate. Multiple unit cell geometries are analyzed in order to find the setup with the best performance in terms of impedance characteristics and frequency bandwidth

[1]  A. Monti,et al.  Mantle cloak devices for TE and TM polarizations , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[2]  A. Grbic,et al.  Modeling and Analysis of Printed-Circuit Tensor Impedance Surfaces , 2013, IEEE Transactions on Antennas and Propagation.

[3]  S. R. Seshadri RAY MODEL FOR A PLANAR ANISOTROPIC DIELECTRIC WAVEGUIDE , 1998 .

[4]  Plasmonic cloaking for irregular objects with anisotropic scattering properties. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Amit M. Patel,et al.  Transformation Electromagnetics Devices Based on Printed-Circuit Tensor Impedance Surfaces , 2014, IEEE Transactions on Microwave Theory and Techniques.

[6]  Patrick Meyrueis,et al.  Intrinsic integrated optical temperature sensor based on waveguide bend loss , 2007 .

[7]  D. Sievenpiper,et al.  Artificial Tensor Impedance Surface Waveguides , 2013, IEEE Transactions on Antennas and Propagation.

[8]  Andrea Alù,et al.  Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space , 2013 .

[9]  Per-Simon Kildal,et al.  Artificially soft and hard surfaces in electromagnetics , 1990 .

[10]  Boubacar Kante,et al.  Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies , 2009, 0907.4416.

[11]  Theodor Tamir,et al.  Varieties of leaky waves and their excitation along multilayered structures , 1986 .

[12]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[13]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[14]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[15]  S. Maci,et al.  Hard and soft surfaces realized by FSS printed on a grounded dielectric slab , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[16]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[17]  Amit M. Patel,et al.  Effective Surface Impedance of a Printed-Circuit Tensor Impedance Surface (PCTIS) , 2013, IEEE Transactions on Microwave Theory and Techniques.

[18]  F. García-Vidal,et al.  Transformation optics for plasmonics. , 2010, Nano letters.

[19]  Xiang Zhang,et al.  Transformational plasmon optics. , 2010, Nano letters.

[20]  Walter Rotman,et al.  A Study of Single-Surface Corrugated Guides , 1951, Proceedings of the IRE.

[21]  G. Eleftheriades,et al.  Planar negative refractive index media using periodically L-C loaded transmission lines , 2002 .

[22]  Xiang Zhang,et al.  Plasmonic Luneburg and Eaton lenses. , 2011, Nature nanotechnology.

[23]  G. Eleftheriades,et al.  Resonance-cone focusing in a compensating bilayer of continuous hyperbolic microstrip grids , 2004 .

[24]  Q T Liang,et al.  Simple ray tracing formulas for uniaxial optical crystals. , 1990, Applied optics.

[25]  D. Sievenpiper,et al.  Forward and backward leaky wave radiation with large effective aperture from an electronically tunable textured surface , 2005, IEEE Transactions on Antennas and Propagation.

[26]  Guided waves on a planar tensor impedance surface , 2003 .

[27]  H. J. Bilow Scattering by an infinite wedge with tensor impedance boundary conditions-a moment method/physical optics solution for the currents , 1991 .

[28]  A. Grbic,et al.  A Printed Beam-Shifting Slab Designed Using Tensor Transmission-Line Metamaterials , 2013, IEEE Transactions on Antennas and Propagation.

[29]  O. Luukkonen,et al.  Characterization of Surface-Wave and Leaky-Wave Propagation on Wire-Medium Slabs and Mushroom Structures Based on Local and Nonlocal Homogenization Models , 2009, IEEE Transactions on Microwave Theory and Techniques.

[30]  E. Lier,et al.  A $K_{u}$ -Band Dual Polarization Hybrid-Mode Horn Antenna Enabled by Printed-Circuit-Board Metasurfaces , 2013, IEEE Transactions on Antennas and Propagation.

[31]  J.R. Costa,et al.  Electromagnetic Characterization of Textured Surfaces Formed by Metallic Pins , 2008, IEEE Transactions on Antennas and Propagation.

[32]  P. Kildal Definition of artificially soft and hard surfaces for electromagnetic waves , 1988 .

[33]  G. Hanson,et al.  Leaky-wave dispersion behavior on a grounded ferrite slab waveguide , 2002, IEEE Microwave and Wireless Components Letters.

[34]  T. Jiang,et al.  Manipulating electromagnetic wave polarizations by anisotropic metamaterials. , 2007, Physical review letters.

[35]  D. Sievenpiper,et al.  High-impedance electromagnetic surfaces with a forbidden frequency band , 1999 .

[36]  R. King,et al.  The synthesis of surface reactance using an artificial dielectric , 1983 .

[37]  B. Fong,et al.  Advances in Artificial Impedance Surface Conformal Antennas , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[38]  David R. Smith,et al.  An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials , 2012, IEEE Antennas and Propagation Magazine.

[39]  A. Alú,et al.  Mantle cloaking using thin patterned metasurfaces , 2011 .

[40]  E. Marcatili Bends in optical dielectric guides , 1969 .

[41]  William L. Barnes,et al.  Photonic surfaces for surface-plasmon polaritons , 1997 .

[42]  C. Mias,et al.  A Varactor-Tunable High Impedance Surface With a Resistive-Lumped-Element Biasing Grid , 2007, IEEE Transactions on Antennas and Propagation.

[43]  Ryan Quarfoth,et al.  Surface Wave Scattering Reduction Using Beam Shifters , 2014, IEEE Antennas and Wireless Propagation Letters.

[44]  Hyok J. Song,et al.  Two-dimensional beam steering using an electrically tunable impedance surface , 2003 .

[45]  W Q Zhang,et al.  General ray-tracing formulas for crystal. , 1992, Applied optics.

[46]  R. Greegor,et al.  Experimental verification and simulation of negative index of refraction using Snell's law. , 2003, Physical review letters.

[47]  N. Kumagai,et al.  Analysis of Electromagnetic-Wave Modes in Anisotropic Slab Waveguide , 1974 .

[48]  D. Hoppe Impedance Boundary Conditions In Electromagnetics , 1995 .

[49]  G. Pelosi,et al.  High-frequency EM scattering by edges in artificially hard and soft surfaces illuminated at oblique incidence , 2000 .

[50]  D. Werner,et al.  Design Synthesis of Metasurfaces for Broadband Hybrid-Mode Horn Antennas With Enhanced Radiation Pattern and Polarization Characteristics , 2012, IEEE Transactions on Antennas and Propagation.

[51]  Adour V. Kabakian,et al.  Surface-Wave Waveguides , 2011 .

[52]  R. Gonzalo,et al.  Thin AMC Structure for Radar Cross-Section Reduction , 2007, IEEE Transactions on Antennas and Propagation.

[53]  A. Snyder,et al.  Bending losses of multimode optical fibres , 1974 .

[54]  G. Minatti,et al.  A Circularly-Polarized Isoflux Antenna Based on Anisotropic Metasurface , 2012, IEEE Transactions on Antennas and Propagation.

[55]  T. Itoh,et al.  A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth , 2004, IEEE Transactions on Microwave Theory and Techniques.

[56]  F. Caminita,et al.  Spiral Leaky-Wave Antennas Based on Modulated Surface Impedance , 2011, IEEE Transactions on Antennas and Propagation.

[57]  A. Monti,et al.  Overcoming Mutual Blockage Between Neighboring Dipole Antennas Using a Low-Profile Patterned Metasurface , 2012, IEEE Antennas and Wireless Propagation Letters.

[58]  Ryan Quarfoth,et al.  Broadband Unit-Cell Design for Highly Anisotropic Impedance Surfaces , 2014, IEEE Transactions on Antennas and Propagation.

[59]  Giuliano Manara,et al.  PHYSICAL OPTICS EXPRESSIONS FOR THE FIELDS SCATTERED FROM ANISOTROPIC IMPEDANCE FLAT PLATES , 1997 .

[60]  A. Grbic,et al.  Experimental verification of backward-wave radiation from a negative refractive index metamaterial , 2002 .

[61]  Giuseppe Pelosi,et al.  A UTD solution for the scattering by a wedge with anisotropic impedance faces: skew incidence case , 1998 .

[62]  David R. Smith,et al.  Optical design of reflectionless complex media by finite embedded coordinate transformations. , 2007, Physical review letters.

[63]  F. Caminita,et al.  Non-Uniform Metasurface Luneburg Lens Antenna Design , 2012, IEEE Transactions on Antennas and Propagation.

[64]  W. R. Jones,et al.  Surface Waves on Two‐Dimensional Corrugated Structures , 1971 .

[65]  D. J. Gregoire 3-D Conformal Metasurfaces , 2013, IEEE Antennas and Wireless Propagation Letters.

[66]  Huanyang Chen,et al.  Electromagnetic wave manipulation by layered systems using the transformation media concept , 2008 .

[67]  Huanyang Chen,et al.  Transformation media that rotate electromagnetic fields , 2007, physics/0702050.

[68]  D. Sievenpiper,et al.  Scalar and Tensor Holographic Artificial Impedance Surfaces , 2010, IEEE Transactions on Antennas and Propagation.

[69]  M. Simon,et al.  Ray tracing formulas for monoaxial optical components. , 1983, Applied optics.

[70]  Mushroom-Type High-Impedance Surface With Loaded Vias: Homogenization Model and Ultra-Thin Design , 2011, IEEE Antennas and Wireless Propagation Letters.

[71]  Ahmed A. Kishk,et al.  Reduction of forward scattering from cylindrical objects using hard surfaces , 1996 .

[72]  D. Sievenpiper,et al.  Anisotropic surface impedance cloak , 2012, Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation.

[73]  Amit M. Patel,et al.  A Printed Leaky-Wave Antenna Based on a Sinusoidally-Modulated Reactance Surface , 2011, IEEE Transactions on Antennas and Propagation.

[74]  M. Caiazzo,et al.  A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab , 2005, IEEE Transactions on Antennas and Propagation.

[75]  Allan W. Snyder Generalised Fresnel's law for loss due to curvature , 1973 .

[76]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[77]  A. Dhouibi,et al.  Compact Metamaterial-Based Substrate-Integrated Luneburg Lens Antenna , 2012, IEEE Antennas and Wireless Propagation Letters.

[78]  Shiwen Yang,et al.  A 2-D Multibeam Half Maxwell Fish-Eye Lens Antenna Using High Impedance Surfaces , 2014, IEEE Antennas and Wireless Propagation Letters.

[79]  G. Eleftheriades,et al.  Experimental Verification of the Effective Medium Properties of a Transmission-Line Metamaterial on a Skewed Lattice , 2011, IEEE Antennas and Wireless Propagation Letters.

[80]  Simulation of anisotropic artificial impedance surface with rectangular and diamond lattices , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).