Mean square exponential synchronization in Lagrange sense for uncertain complex dynamical networks

Abstract In this paper, the problem of the mean square exponential synchronization in Lagrange sense for the uncertain complex network is investigated. A complex network usually appears some uncertain phenomena, which includes varying topology structure, destroyed nodes, and the noise disturbance from circumstance. Based on the Lyapunov stability theory and the Kronecker product analysis technique, some conditions to guarantee the complex network mean square exponential synchronization in Lagrange sense are provided. Finally, two numerical examples are provided to illustrate the effectiveness of the method proposed.

[1]  Zhigang Zeng,et al.  Global exponential stability in Lagrange sense for neutral type recurrent neural networks , 2011, Neurocomputing.

[2]  Changming Ding,et al.  Synchronization of stochastic perturbed chaotic neural networks with mixed delays , 2010, J. Frankl. Inst..

[3]  Junan Lu,et al.  Pinning adaptive synchronization of a general complex dynamical network , 2008, Autom..

[4]  Zidong Wang,et al.  A delay fractioning approach to global synchronization of delayed complex networks with stochastic disturbances , 2008 .

[5]  Jinde Cao,et al.  Adaptive synchronization for delayed neural networks with stochastic perturbation , 2008, J. Frankl. Inst..

[6]  Aihua Hu,et al.  Pinning a complex dynamical network via impulsive control , 2009 .

[7]  Junan Lu,et al.  Synchronization of impulsively Coupled Systems , 2008, Int. J. Bifurc. Chaos.

[8]  Y. Yang,et al.  Lagrange Stability of a Class of Nonlinear Discrete-time Systems , 2006, 2006 1ST IEEE Conference on Industrial Electronics and Applications.

[9]  Yunze Cai,et al.  Synchronization criteria for complex dynamical networks with neutral-type coupling delay , 2008 .

[10]  Wuneng Zhou,et al.  On dynamics analysis of a new chaotic attractor , 2008 .

[11]  Reza Olfati-Saber,et al.  Flocking for multi-agent dynamic systems: algorithms and theory , 2006, IEEE Transactions on Automatic Control.

[12]  Jun-an Lu,et al.  Topology identification of weighted complex dynamical networks , 2007 .

[13]  Yuhua Xu,et al.  Topology identification and adaptive synchronization of uncertain complex networks with non-derivative and derivative coupling , 2010, J. Frankl. Inst..

[14]  Kevin M. Passino,et al.  Lagrange stability and boundedness of discrete event systems , 1995, Discret. Event Dyn. Syst..

[15]  Wei Wu,et al.  Cluster Synchronization of Linearly Coupled Complex Networks Under Pinning Control , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  Xiang Li,et al.  Global stabilization of complex networks with digraph topologies via a local pinning algorithm , 2010, Autom..

[17]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[18]  Ming Cao,et al.  Generalized synchronization in complex dynamical networks via adaptive couplings , 2010 .

[19]  Song Zheng,et al.  Impulsive synchronization of complex networks with non-delayed and delayed coupling , 2009 .

[20]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[21]  Chien-Cheng Chang,et al.  Impulsive synchronization of Lipschitz chaotic systems , 2009 .

[22]  Pravin Varaiya,et al.  On synthesizing team target controls under obstacles and collision avoidance , 2010, J. Frankl. Inst..

[23]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[24]  Jinde Cao,et al.  Hopf bifurcation control for delayed complex networks , 2007, J. Frankl. Inst..

[25]  Jinde Cao,et al.  Local Synchronization of a Complex Network Model , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[26]  Lin Huang,et al.  Control of a class of pendulum-like systems with Lagrange stability , 2006, Autom..

[27]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[28]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[29]  Jigen Peng,et al.  Exponential lag synchronization of fuzzy cellular neural networks with time-varying delays , 2012, J. Frankl. Inst..

[30]  Naomi Ehrich Leonard,et al.  Virtual leaders, artificial potentials and coordinated control of groups , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).