Aberrant splicing contributes to severe alpha-spectrin-linked congenital hemolytic anemia

Patrick G. Gallagher, Yale University Yelena Maksimova, Yale University Kimberly Lezon-Geyda, Yale University Peter E. Newburger, University of Massachusetts Desiree Medeiros, Kapiolani Medical Center for Women Robin D. Hanson, Cardinal's Kids Cancer Center Jennifer Rothman, Duke University Sara Israels, University of Manitoba Donna A. Wall, University of Toronto Robert F. Sidonio Jr, Emory University

[1]  N. Mohandas Inherited hemolytic anemia: a possessive beginner's guide. , 2018, Hematology. American Society of Hematology. Education Program.

[2]  J. Kinney,et al.  Quantitative Activity Profile and Context Dependence of All Human 5' Splice Sites. , 2018, Molecular cell.

[3]  Tim R. Mercer,et al.  Machine learning annotation of human branchpoints , 2018, Bioinform..

[4]  M. Carmo-Fonseca,et al.  Deep intronic mutations and human disease , 2017, Human Genetics.

[5]  J. Conboy RNA splicing during terminal erythropoiesis , 2017, Current opinion in hematology.

[6]  D. Baralle,et al.  RNA splicing in human disease and in the clinic. , 2017, Clinical science.

[7]  L. Maquat,et al.  Leveraging Rules of Nonsense-Mediated mRNA Decay for Genome Engineering and Personalized Medicine , 2016, Cell.

[8]  L. Maquat,et al.  Nonsense-mediated mRNA decay in humans at a glance , 2016, Journal of Cell Science.

[9]  L. Shkreta,et al.  Defective control of pre–messenger RNA splicing in human disease , 2016, The Journal of cell biology.

[10]  M. Swanson,et al.  RNA mis-splicing in disease , 2015, Nature Reviews Genetics.

[11]  J. Prchal,et al.  Novel α-Spectrin Mutation in Trans with α-SpectrinLEPRA Causing Severe Neonatal Jaundice from Hereditary Spherocytosis , 2014, Neonatology.

[12]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[13]  Timothy Sterne-Weiler,et al.  Exon identity crisis: disease-causing mutations that disrupt the splicing code , 2014, Genome Biology.

[14]  D. Speicher,et al.  Probing large conformational rearrangements in wild-type and mutant spectrin using structural mass spectrometry , 2014, Proceedings of the National Academy of Sciences.

[15]  Lior Pachter,et al.  A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis , 2014, Nucleic acids research.

[16]  P. Gallagher Abnormalities of the erythrocyte membrane. , 2013, Pediatric clinics of North America.

[17]  M. Lewandowska The missing puzzle piece: splicing mutations. , 2013, International journal of clinical and experimental pathology.

[18]  D. Speicher,et al.  The common hereditary elliptocytosis-associated α-spectrin L260P mutation perturbs erythrocyte membranes by stabilizing spectrin in the closed dimer conformation. , 2013, Blood.

[19]  D. Duelli,et al.  Targeting RNA splicing for disease therapy , 2013, Wiley interdisciplinary reviews. RNA.

[20]  T. Cooper,et al.  Pre-mRNA splicing in disease and therapeutics. , 2012, Trends in molecular medicine.

[21]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[22]  Jana Marie Schwarz,et al.  MutationTaster evaluates disease-causing potential of sequence alterations , 2010, Nature Methods.

[23]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[24]  A. Mondragón,et al.  Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex. , 2010, Blood.

[25]  R. Desnick,et al.  Congenital erythropoietic porphyria: a novel uroporphyrinogen III synthase branchpoint mutation reveals underlying wild-type alternatively spliced transcripts. , 2010, Blood.

[26]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[27]  Schraga Schwartz,et al.  SROOGLE: webserver for integrative, user-friendly visualization of splicing signals , 2009, Nucleic Acids Res..

[28]  P. Gallagher,et al.  A complex splicing defect associated with homozygous ankyrin-deficient hereditary spherocytosis. , 2007, Blood.

[29]  B. Forget,et al.  A novel splicing mutation of the alpha-spectrin gene in the original hereditary pyropoikilocytosis kindred. , 2005, Blood.

[30]  T. Cooper Use of minigene systems to dissect alternative splicing elements. , 2005, Methods.

[31]  O. Danos,et al.  Different impacts of alleles αLEPRA and αLELY as assessed versus a novel, virtually null allele of the SPTA1 gene in trans , 2004, British journal of haematology.

[32]  S. Perrotta,et al.  Clinical and molecular evaluation of non‐dominant hereditary spherocytosis , 2001, British journal of haematology.

[33]  B. Séraphin,et al.  The branchpoint residue is recognized during commitment complex formation before being bulged out of the U2 snRNA-pre-mRNA duplex , 1997, Molecular and cellular biology.

[34]  D. Speicher,et al.  Amino‐acid substitution in α‐spectrin commonly coinherited with nondominant hereditary spherocytosis , 1997, American journal of hematology.

[35]  H. Wichterle,et al.  Combination of two mutant alpha spectrin alleles underlies a severe spherocytic hemolytic anemia. , 1996, The Journal of clinical investigation.

[36]  J. Palek,et al.  Biogenesis of normal and abnormal red blood cell membrane skeleton. , 1992, Seminars in hematology.

[37]  K. Sahr,et al.  Asynchronous synthesis of membrane skeletal proteins during terminal maturation of murine erythroblasts. , 1992, Blood.

[38]  A. Baruchel,et al.  A common type of the spectrin alpha I 46-50a-kD peptide abnormality in hereditary elliptocytosis and pyropoikilocytosis is associated with a mutation distant from the proteolytic cleavage site. Evidence for the functional importance of the triple helical model of spectrin. , 1992, The Journal of clinical investigation.

[39]  P. Agre,et al.  Decreased membrane mechanical stability and in vivo loss of surface area reflect spectrin deficiencies in hereditary spherocytosis. , 1988, The Journal of clinical investigation.

[40]  J. Palek,et al.  Synthesis and assembly of membrane skeletal proteins in mammalian red cell precursors , 1987, The Journal of cell biology.

[41]  P. Agre,et al.  Inheritance pattern and clinical response to splenectomy as a reflection of erythrocyte spectrin deficiency in hereditary spherocytosis. , 1986, The New England journal of medicine.

[42]  Vann Bennett,et al.  Partial deficiency of erythrocyte spectrin in hereditary spherocytosis , 1985, Nature.

[43]  P. Agre,et al.  Deficient red-cell spectrin in severe, recessively inherited spherocytosis. , 1982, The New England journal of medicine.

[44]  D. Speicher,et al.  Identification of proteolytically resistant domains of human erythrocyte spectrin. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[45]  N. Mohandas,et al.  A Congenital Haemolytic Anaemia with Thermal Sensitivity of the Erythrocyte Membrane , 1975, British journal of haematology.

[46]  D. Wallach,et al.  Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. , 1971, Biochemistry.

[47]  B. Forget,et al.  Mutation of a highly conserved isoleucine disrupts hydrophobic interactions in the alpha beta spectrin self-association binding site. , 2004, Laboratory investigation; a journal of technical methods and pathology.

[48]  B. Grandchamp,et al.  Coinheritance of two alpha-spectrin gene defects in a recessive spherocytosis family. , 2000, Clinical and laboratory haematology.

[49]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[50]  E. Fibach,et al.  Molecular basis of spectrin deficiency in hereditary pyropoikilocytosis. , 1993, Blood.

[51]  V. Marchesi,et al.  Abnormal spectrin in hereditary elliptocytosis. , 1986, Blood.