Hardware-Efficient Quantum Random Access Memory with Hybrid Quantum Acoustic Systems.

Hybrid quantum systems in which acoustic resonators couple to superconducting qubits are promising quantum information platforms. High quality factors and small mode volumes make acoustic modes ideal quantum memories, while the qubit-phonon coupling enables the initialization and manipulation of quantum states. We present a scheme for quantum computing with multimode quantum acoustic systems, and based on this scheme, propose a hardware-efficient implementation of a quantum random access memory (QRAM). Quantum information is stored in high-Q phonon modes, and couplings between modes are engineered by applying off-resonant drives to a transmon qubit. In comparison to existing proposals that involve directly exciting the qubit, this scheme can offer a substantial improvement in gate fidelity for long-lived acoustic modes. We show how these engineered phonon-phonon couplings can be used to access data in superposition according to the state of designated address modes-implementing a QRAM on a single chip.

[1]  S. Gasparinetti,et al.  Deterministic quantum state transfer and remote entanglement using microwave photons , 2017, Nature.

[2]  I. Chuang,et al.  Qudit-Basis Universal Quantum Computation Using χ^{(2)} Interactions. , 2017, Physical review letters.

[3]  Thomas Faust,et al.  Coherent control of a classical nanomechanical two-level system , 2012, Nature Physics.

[4]  Liang Jiang,et al.  Entanglement of bosonic modes through an engineered exchange interaction , 2018, Nature.

[5]  Ling Hu,et al.  Quantum error correction and universal gate set operation on a binomial bosonic logical qubit , 2018, Nature Physics.

[6]  Erik Lucero,et al.  Generation of Fock states in a superconducting quantum circuit , 2008, Nature.

[7]  Liang Jiang,et al.  Engineering bilinear mode coupling in circuit QED: Theory and experiment , 2018, Physical Review A.

[8]  A N Cleland,et al.  Superconducting qubit storage and entanglement with nanomechanical resonators. , 2004, Physical review letters.

[9]  R. Baets,et al.  Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics , 2018, Optica.

[10]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[11]  Liang Jiang,et al.  Universal control of an oscillator with dispersive coupling to a qubit , 2015, 1502.08015.

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  R. J. Schoelkopf,et al.  Improving the quality factor of microwave compact resonators by optimizing their geometrical parameters , 2011, 1204.0742.

[14]  Martin V. Gustafsson,et al.  Propagating phonons coupled to an artificial atom , 2014, Science.

[15]  Ming-Han Chou,et al.  Quantum control of surface acoustic-wave phonons , 2018, Nature.

[16]  Franco Nori,et al.  Circuit quantum acoustodynamics with surface acoustic waves , 2017, Nature Communications.

[17]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[18]  Yvonne Y Gao,et al.  Entangling Bosonic Modes via an Engineered Exchange Interaction , 2020 .

[19]  Luigi Frunzio,et al.  Black-box superconducting circuit quantization. , 2012, Physical review letters.

[20]  L.-M. Duan,et al.  Experimental realization of 105-qubit random access quantum memory , 2019, npj Quantum Information.

[21]  Andreas Wallraff,et al.  Deterministic Quantum State Transfer and Generation of Remote Entanglement using Microwave Photons , 2018 .

[22]  Liang Jiang,et al.  Quantum memory with millisecond coherence in circuit QED , 2015, 1508.05882.

[23]  K. Lehnert,et al.  Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime. , 2017, Physical review letters.

[24]  P. Hakonen,et al.  Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator , 2012, Nature.

[25]  Liang Jiang,et al.  Implementing a universal gate set on a logical qubit encoded in an oscillator , 2016, Nature Communications.

[26]  A. Safavi-Naeini,et al.  Superconducting circuit quantum computing with nanomechanical resonators as storage , 2018, Quantum Science and Technology.

[27]  P. Rakich,et al.  Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator , 2018, Nature.

[28]  Timothy P. McKenna,et al.  Resolving the energy levels of a nanomechanical oscillator , 2019, Nature.

[29]  Michael E. Tobar,et al.  Extremely Low Loss Phonon-Trapping Cryogenic Acoustic Cavities for Future Physical Experiments , 2013, Scientific Reports.

[30]  Yasunobu Nakamura,et al.  Qubit-Assisted Transduction for a Detection of Surface Acoustic Waves near the Quantum Limit. , 2017, Physical review letters.

[31]  E. B. Magnusson,et al.  Surface acoustic wave resonators in the quantum regime , 2015, 1510.04965.

[32]  Jeffrey H. Shapiro,et al.  Hardware-efficient bosonic quantum error-correcting codes based on symmetry operators , 2017, 1709.05302.

[33]  R. Barends,et al.  Design and characterization of a lumped element single-ended superconducting microwave parametric amplifier with on-chip flux bias line , 2013, 1308.1376.

[34]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[35]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[36]  O. Astafiev,et al.  Quantum Regime of a Two-Dimensional Phonon Cavity. , 2018, Physical review letters.

[37]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[38]  Matthew Reagor,et al.  A coaxial line architecture for integrating and scaling 3D cQED systems , 2016 .

[39]  Liang Jiang,et al.  Programmable Interference between Two Microwave Quantum Memories , 2018, Physical Review X.

[40]  Liang Jiang,et al.  On-demand quantum state transfer and entanglement between remote microwave cavity memories , 2017, 1712.05832.

[41]  M. Tobar,et al.  Extremely low-loss acoustic phonons in a quartz bulk acoustic wave resonator at millikelvin temperature , 2012, 1202.4556.

[42]  Robert H. Hadfield,et al.  Superconducting Devices in Quantum Optics , 2016 .

[43]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[44]  Jens Koch,et al.  Random access quantum information processors using multimode circuit quantum electrodynamics , 2017, Nature Communications.

[45]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[46]  J. Ignacio Cirac,et al.  Universal Quantum Transducers Based on Surface Acoustic Waves , 2015, 1504.05127.

[47]  Srinivasan Arunachalam,et al.  On the robustness of bucket brigade quantum RAM , 2015, TQC.

[48]  P. Rakich,et al.  Bulk crystalline optomechanics , 2017, 1703.08231.

[49]  R. J. Schoelkopf,et al.  Confining the state of light to a quantum manifold by engineered two-photon loss , 2014, Science.

[50]  Martin B Plenio,et al.  Universal Quantum Computing with Arbitrary Continuous-Variable Encoding. , 2016, Physical review letters.

[51]  Victor V. Albert,et al.  Performance and structure of single-mode bosonic codes , 2017, 1708.05010.

[52]  Chang-Ling Zou,et al.  Multimode Strong Coupling in Superconducting Cavity Piezoelectromechanics. , 2016, Physical review letters.

[53]  T. A. Palomaki,et al.  Coherent state transfer between itinerant microwave fields and a mechanical oscillator , 2012, Nature.

[54]  Alexandre Blais,et al.  Quantum information processing with circuit quantum electrodynamics , 2007 .

[55]  W. Marsden I and J , 2012 .

[56]  Erik Lucero,et al.  Surface loss simulations of superconducting coplanar waveguide resonators , 2011, 1107.4698.

[57]  Jay M. Gambetta,et al.  Time-reversal symmetrization of spontaneous emission for quantum state transfer , 2013, 1308.3471.

[58]  Andrew G. Glen,et al.  APPL , 2001 .

[59]  A. Cleland,et al.  Phonon-mediated quantum state transfer and remote qubit entanglement , 2019, Science.

[60]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[61]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[62]  R. J. Schoelkopf,et al.  Tracking photon jumps with repeated quantum non-demolition parity measurements , 2013, Nature.

[63]  Erik Lucero,et al.  Implementing the Quantum von Neumann Architecture with Superconducting Circuits , 2011, Science.

[64]  Alexandru Paler,et al.  Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity , 2018, Physical Review X.

[65]  K. Lehnert,et al.  Resolving Phonon Fock States in a Multimode Cavity with a Double-Slit Qubit , 2019, Physical Review X.

[66]  M. Sillanpaa,et al.  Interfacing planar superconducting qubits with high overtone bulk acoustic phonons , 2018, Physical Review B.

[67]  Matthew Reagor,et al.  An architecture for integrating planar and 3D cQED devices , 2016 .

[68]  S. Berger,et al.  Microwave-Controlled Generation of Shaped Single Photons in Circuit Quantum Electrodynamics , 2013, 1308.4094.

[69]  A. Zeilinger,et al.  Efficient quantum computing using coherent photon conversion , 2011, Nature.

[70]  Luigi Frunzio,et al.  Quantum acoustics with superconducting qubits , 2017, Science.

[71]  P. Rakich,et al.  Ultra-high-Qphononic resonators on-chip at cryogenic temperatures , 2018, APL Photonics.

[72]  S. Lloyd,et al.  Architectures for a quantum random access memory , 2008, 0807.4994.

[73]  E. Solano,et al.  Scalable quantum memory in the ultrastrong coupling regime , 2014, Scientific Reports.

[74]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[75]  Anton Frisk Kockum,et al.  Giant acoustic atom: A single quantum system with a deterministic time delay , 2016, 1612.00865.

[76]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.