InChI-based optimal descriptors: QSAR analysis of fullerene[C60]-based HIV-1 PR inhibitors by correlation balance.

The International Chemical Identifier (InChI) has been used to construct InChI-based optimal descriptors to model the binding affinity for fullerene[C60]-based inhibitors of human immunodeficiency virus type 1 aspartic protease (HIV-1 PR). Statistical characteristics of the one-variable model obtained by the balance of correlations are as follows: n=8, r(2)=0.9769, q(2)(LOO)=0.9646, s=0.099, F=254 (subtraining set); n=7, r(2)=0.7616, s=0.681, F=16 (calibration set); n=5, r(2)=0.9724, s=0.271, F=106, R(m)(2)=0.9495 (test set). Predictability of this approach has been checked with three random splits of the data: into the subtraining set, calibration set, and test set.

[1]  Quantitative structure-activity relationship studies: β-adrenergic blocking activity of 1-(2,4-disubstituted phenoxy)-3-aminopropan-2-ols , 1990 .

[2]  Jerzy Leszczynski,et al.  Additive InChI-based optimal descriptors: QSPR modeling of fullerene C60 solubility in organic solvents , 2009 .

[3]  K Krishnan,et al.  Quantitative structure-pharmacokinetic relationship modelling. , 2001, The Science of the total environment.

[4]  Tomasz Puzyn,et al.  QSPR-based estimation of the atmospheric persistence for chloronaphthalene congeners , 2008 .

[5]  Emilio Benfenati,et al.  QSAR Modelling for Mutagenic Potency of Heteroaromatic Amines by Optimal SMILES‐based Descriptors , 2009, Chemical biology & drug design.

[6]  Serdar Durdagi,et al.  3D QSAR CoMFA/CoMSIA, molecular docking and molecular dynamics studies of fullerene-based HIV-1 PR inhibitors. , 2008, Bioorganic & medicinal chemistry letters.

[7]  R. Yunes,et al.  Semi‐empirical topological index to predict properties of halogenated aliphatic compounds , 2008 .

[8]  E. Castro,et al.  3D-chiral (2.5) atom-based TOMOCOMD-CARDD descriptors: theory and QSAR applications to central chirality codification , 2008 .

[9]  A. Tropsha,et al.  Beware of q2! , 2002, Journal of molecular graphics & modelling.

[10]  Arthur M. Doweyko,et al.  QSAR: dead or alive? , 2008, J. Comput. Aided Mol. Des..

[11]  Stephen R. Johnson,et al.  The Trouble with QSAR (or How I Learned To Stop Worrying and Embrace Fallacy) , 2008, J. Chem. Inf. Model..

[12]  Henry S. Rzepa,et al.  A global resource for computational chemistry , 2005, Journal of molecular modeling.

[13]  Jerzy Leszczynski,et al.  QSAR modeling of acute toxicity by balance of correlations. , 2008, Bioorganic & medicinal chemistry.

[14]  Arthur M. Doweyko,et al.  3D-QSAR illusions , 2004, J. Comput. Aided Mol. Des..

[15]  Jerzy Leszczynski,et al.  The effects of characteristics of substituents on toxicity of the nitroaromatics: HiT QSAR study , 2008, J. Comput. Aided Mol. Des..

[16]  P. Roy,et al.  On Some Aspects of Variable Selection for Partial Least Squares Regression Models , 2008 .

[17]  Emilio Benfenati,et al.  QSPR modeling of octanol water partition coefficient of platinum complexes by InChI-based optimal descriptors , 2009 .

[18]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[19]  Serdar Durdagi,et al.  Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations. , 2008, Bioorganic & medicinal chemistry.

[20]  David Weininger,et al.  SMILES, 3. DEPICT. Graphical depiction of chemical structures , 1990, J. Chem. Inf. Comput. Sci..

[21]  Haralambos Sarimveis,et al.  A Novel QSAR Model for Evaluating and Predicting the Inhibition Activity of Dipeptidyl Aspartyl Fluoromethylketones , 2006 .

[22]  Kunal Roy,et al.  Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques. , 2009, European journal of medicinal chemistry.

[23]  Jerzy Leszczynski,et al.  Multiple Linear Regression Analysis and Optimal Descriptors: Predicting the Cholesteryl Ester Transfer Protein Inhibition Activity , 2008 .