A Metropolis-Hastings routine for estimating parameters from compact binary inspiral events with laser interferometric gravitational radiation data

Presented here are the results of a Metropolis–Hastings Markov chain Monte Carlo routine applied to the problem of determining parameters for coalescing binary systems observed with laser interferometric detectors. The Metropolis– Hastings routine is described in detail, and examples show that signals may be detected and analysed from within noisy data. Using the Bayesian framework of statistical inference, posterior distributions for the parameters of the binary system are derived using our routine.

[1]  W. Gilks Markov Chain Monte Carlo , 2005 .

[2]  S. Hughes Tuning gravitational-wave detector networks to measure compact binary mergers , 2002, gr-qc/0209012.

[3]  T. Damour,et al.  Comparison of search templates for gravitational waves from binary inspiral: 3.5PN update , 2002, gr-qc/0207021.

[4]  A robust and coherent network statistic for detecting gravitational waves from inspiralling compact binaries in non-Gaussian noise , 2002 .

[5]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[6]  A. Pai,et al.  Computational cost for detecting inspiralling binaries using a network of laser interferometric detectors , 2001, gr-qc/0110041.

[7]  C. Skordis,et al.  The Age of the Universe and the Cosmological Constant Determined from Cosmic Microwave Background Anisotropy Measurements , 2001, astro-ph/0109232.

[8]  T. Apostolatos,et al.  Less accurate but more efficient family of search templates for detection of gravitational waves from inspiraling compact binaries , 2001 .

[9]  G. Roberts,et al.  Approximate Predetermined Convergence Properties of the Gibbs Sampler , 2001 .

[10]  N. Christensen,et al.  Using Markov chain Monte Carlo methods for estimating parameters with gravitational radiation data , 2001, gr-qc/0102018.

[11]  T. Damour,et al.  A Comparison of search templates for gravitational waves from binary inspiral , 2000, gr-qc/0010009.

[12]  N. Christensen,et al.  Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements , 2000, astro-ph/0103134.

[13]  Takahiro Tanaka,et al.  Use of new coordinates for the template space in a hierarchical search for gravitational waves from inspiraling binaries , 2000, gr-qc/0001090.

[14]  J. Ibrahim,et al.  Monte Carlo Methods in Bayesian Computation , 2000 .

[15]  T. Damour,et al.  Transition from inspiral to plunge in binary black hole coalescences , 2000, gr-qc/0001013.

[16]  Jack J. Dongarra,et al.  Guest Editors Introduction to the top 10 algorithms , 2000, Comput. Sci. Eng..

[17]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1998, gr-qc/9811091.

[18]  J. Rosenthal,et al.  Convergence of Slice Sampler Markov Chains , 1999 .

[19]  Nelson Christensen,et al.  Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis , 1998 .

[20]  G. Roberts,et al.  Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .

[21]  S. Hughes,et al.  Measuring gravitational waves from binary black hole coalescences. II. The waves’ information and its extraction, with and without templates , 1997, gr-qc/9710129.

[22]  A. Vecchio,et al.  Bayesian bounds on parameter extraction accuracy for compact coalescing binary gravitational wave signals , 1997, gr-qc/9705064.

[23]  S. Hughes,et al.  Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown , 1997, gr-qc/9701039.

[24]  A. Frigessi,et al.  Computational complexity of Markov chain Monte Carlo methods for finite Markov random fields , 1997 .

[25]  Mohanty,et al.  Hierarchical search strategy for the detection of gravitational waves from coalescing binaries. , 1996, Physical review. D, Particles and fields.

[26]  Apostolatos Influence of spin-spin coupling on inspiraling compact binaries with M1=M2 and S1=S2. , 1996, Physical review. D, Particles and fields.

[27]  Construction of a template family for the detection of gravitational waves from coalescing binaries. , 1996, Physical review. D, Particles and fields.

[28]  R. Tweedie,et al.  Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .

[29]  Luc Blanchet,et al.  Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order , 1996, gr-qc/9602024.

[30]  Finn,et al.  Binary inspiral, gravitational radiation, and cosmology. , 1996, Physical review. D, Particles and fields.

[31]  W. Gilks,et al.  Adaptive Rejection Metropolis Sampling Within Gibbs Sampling , 1995 .

[32]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[33]  T. Apostolatos,et al.  Search templates for gravitational waves from precessing, inspiraling binaries. , 1995, Physical review. D, Particles and fields.

[34]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[35]  A. Gelfand,et al.  On Markov Chain Monte Carlo Acceleration , 1994 .

[36]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[37]  Marković Possibility of determining cosmological parameters from measurements of gravitational waves emitted by coalescing, compact binaries. , 1993, Physical review. D, Particles and fields.

[38]  Finn,et al.  Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.

[39]  Flanagan,et al.  The last three minutes: Issues in gravitational-wave measurements of coalescing compact binaries. , 1992, Physical review letters.

[40]  Finn,et al.  Detection, measurement, and gravitational radiation. , 1992, Physical review. D, Particles and fields.

[41]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[42]  T. Loredo Promise of Bayesian Inference for Astrophysics , 1992 .

[43]  J. Weisberg,et al.  Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16 , 1989 .

[44]  W. Israel in 300 Years of Gravitation , 1988 .

[45]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[46]  P. Laplace Memoir on the Probability of the Causes of Events , 1986 .

[47]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[48]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.