Adaptive-Gain Second Order Sliding Mode Observer Design for Switching Power Converters

In this paper, an adaptive-gain, Second Order Sliding Mode (SOSM) observer for multi-cell converters is designed by considering it as a type of hybrid system. The objective is to reduce the number of voltage sensors by estimating the capacitor voltages from measurement of the load current. The proposed observer is proven to be robust in the presence of perturbations with unknown boundaries. As the states of the system are only partially observable, a recent concept known as Z(TN)-observability is used to address the switching behavior. Multi-rate simulation results demonstrate the effectiveness and the robustness of the proposed observer with respect to output measurement noise and system uncertainty (load variations).

[1]  Daniel E. Quevedo,et al.  Model Predictive Control of an Asymmetric Flying Capacitor Converter , 2009, IEEE Transactions on Industrial Electronics.

[2]  Malek Ghanes,et al.  Observability and observer design for hybrid multicell choppers , 2010, Int. J. Control.

[3]  Raymond A. DeCarlo,et al.  MPC of Switching in a Boost Converter Using a Hybrid State Model With a Sliding Mode Observer , 2009, IEEE Transactions on Industrial Electronics.

[4]  Pascal Maussion,et al.  Multicell converters: active control and observation of flying-capacitor voltages , 2002, IEEE Trans. Ind. Electron..

[5]  M. Fadel,et al.  Flying capacitor voltages estimation in three-cell converters using a discrete-time Kalman filter at one third switching period , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[6]  M. Ghanes,et al.  On sliding mode and adaptive observers design for multicell converter , 2009, 2009 American Control Conference.

[7]  Maurice Fadel,et al.  A Predictive Control With Flying Capacitor Balancing of a Multicell Active Power Filter , 2008, IEEE Transactions on Industrial Electronics.

[8]  Gildas Besancon,et al.  Nonlinear observers and applications , 2007 .

[9]  M. Ghanes,et al.  Direct control based on sliding mode techniques for multicell serial chopper , 2011, Proceedings of the 2011 American Control Conference.

[10]  Cassiano Rech,et al.  Hybrid Multilevel Converters: Unified Analysis and Design Considerations , 2007, IEEE Transactions on Industrial Electronics.

[11]  P. Olver Nonlinear Systems , 2013 .

[12]  George J. Pappas,et al.  Observability of Switched Linear Systems in Continuous Time , 2005, HSCC.

[13]  Thierry Meynard,et al.  Modeling of multilevel converters , 1997, IEEE Trans. Ind. Electron..

[14]  Bin Wu,et al.  Recent Advances and Industrial Applications of Multilevel Converters , 2010, IEEE Transactions on Industrial Electronics.

[15]  Henk Nijmeijer,et al.  Time scaling for observer design with linearizable error dynamics , 2004, Autom..

[16]  Guillaume Gateau,et al.  Digital Sliding-Mode Observer Implementation Using FPGA , 2007, IEEE Transactions on Industrial Electronics.

[17]  Michael Defoort,et al.  Robust finite time observer design for multicellular converters , 2011, Int. J. Syst. Sci..

[18]  M. Baja,et al.  Hybrid control of a three-level three-cell dc-dc converter , 2007, 2007 American Control Conference.

[19]  Jaime A. Moreno,et al.  A Lyapunov approach to second-order sliding mode controllers and observers , 2008, 2008 47th IEEE Conference on Decision and Control.

[20]  M. Tadjine,et al.  Sliding mode and fault tolerant control for multicell converter four quadrants , 2013 .

[21]  Mohamed Djemai,et al.  High-order sliding mode control of a DC motor drive via a switched controlled multi-cellular converter , 2011, Int. J. Syst. Sci..

[22]  Antonio Loría,et al.  Uniform exponential stability of linear time-varying systems: revisited , 2002, Syst. Control. Lett..

[23]  Wei Kang,et al.  On the Observability of Nonlinear and Switched Systems , 2009 .

[24]  Maurice Fadel,et al.  Sliding Mode Observer for Multicell Converters , 2001 .

[25]  S. Shankar Sastry,et al.  Observability of Linear Hybrid Systems , 2003, HSCC.

[26]  Patrick Wheeler,et al.  High-voltage multicellular converters applied to ac/ac conversion , 2003 .

[27]  Jamal Daafouz,et al.  On the algebraic characterization of invariant sets of switched linear systems , 2010, Autom..

[28]  Jean-Pierre Barbot,et al.  Sliding Mode Control In Engineering , 2002 .

[29]  Avrie Levent,et al.  Robust exact differentiation via sliding mode technique , 1998, Autom..

[30]  Fang Zheng Peng,et al.  Multilevel inverters: a survey of topologies, controls, and applications , 2002, IEEE Trans. Ind. Electron..

[31]  Leonid M. Fridman,et al.  Lyapunov-Designed Super-Twisting Sliding Mode Control for Wind Energy Conversion Optimization , 2013, IEEE Transactions on Industrial Electronics.

[32]  M. Fadel,et al.  Floating voltages estimation in three-cell converters using a discrete-time Kalman filter , 2001, 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230).

[33]  T.A. Meynard,et al.  Multi-level conversion: high voltage choppers and voltage-source inverters , 1992, PESC '92 Record. 23rd Annual IEEE Power Electronics Specialists Conference.

[34]  D.G. Holmes,et al.  Analytical Modelling of Voltage Balance Dynamics for a Flying Capacitor Multilevel Converter , 2007, 2007 IEEE Power Electronics Specialists Conference.