Hierarchical Bayesian lithology/fluid prediction: A North Sea case study

Seismic 3D amplitude variation with offset (AVO) data from the Alvheim field in the North Sea are inverted into lithology/fluid classes, elastic properties, and porosity. Lithology/fluid maps over hydrocarbon prospects provide more reliable estimates of gas/oil volumes and improve the decision concerning further reservoir assessments. The Alvheim field is of turbidite origin with complex sand-lobe geometry and appears without clear fluid contacts across the field. The inversion is phrased in a Bayesian setting. The likelihood model contains a convolutional, linearized seismic model and a rock-physics model that capture vertical trends due to increased sand compaction and possible cementation. The likelihood model contains several global model parameters that are considered to be stochastic to adapt the model to the field under study and to include model uncertainty in the uncertainty assessments. The prior model on the lithology/fluid classes is a Markov random field that captures local vertical/horizonta...

[1]  A. Reynolds,et al.  Application of EM algorithms for seismic facices classification , 2011 .

[2]  H. Omre,et al.  Impact of rock-physics depth trends and Markov random fields on hierarchical Bayesian lithology/fluid prediction , 2010 .

[3]  T. Mukerji,et al.  Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review , 2010 .

[4]  Ernesto Della Rossa,et al.  Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion , 2010 .

[5]  Henning Omre,et al.  Improved resolution in Bayesian lithology/fluid inversion from prestack seismic data and well observations: Part 1 — Methodology , 2010 .

[6]  D. Saussus,et al.  Comparison of lithology and net pay uncertainty between deterministic and geostatistical inversion workflows , 2010 .

[7]  T. Mukerji,et al.  The Rock Physics Handbook: Contents , 2009 .

[8]  Carla Carvajal,et al.  Petrophysical seismic inversion conditioned to well-log data: Methods and application to a gas reservoir , 2009 .

[9]  G. Mavko,et al.  Rock physics estimation of cement volume, sorting, and net-to-gross in North Sea sandstones , 2009 .

[10]  T. Johansen,et al.  Shale rock physics and implications for AVO analysis: A North Sea demonstration , 2008 .

[11]  Arild Buland,et al.  Bayesian lithology and fluid prediction from seismic prestack data , 2008 .

[12]  Tapan Mukerji,et al.  Seismic inversion combining rock physics and multiple-point geostatistics , 2008 .

[13]  M. Glinsky,et al.  Detection of reservoir quality using Bayesian seismic inversion , 2007 .

[14]  Arild Buland,et al.  Bayesian lithology/fluid prediction and simulation on the basis of a Markov-chain prior model , 2006 .

[15]  Ran Bachrach,et al.  Joint estimation of porosity and saturation using stochastic rock-physics modeling , 2006 .

[16]  T. Mukerji,et al.  Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk , 2005 .

[17]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[18]  Tapan Mukerji,et al.  Stochastic reservoir characterization using prestack seismic data , 2004 .

[19]  N. Dutta,et al.  Joint Estimation of Porosity and Saturation Using Stochastic Rock Physics Modeling , 2004, 66th EAGE Conference & Exhibition.

[20]  A. Buland,et al.  Joint AVO inversion, wavelet estimation and noise‐level estimation using a spatially coupled hierarchical Bayesian model , 2003 .

[21]  Harald Flesche,et al.  AVO classification of lithology and pore fluids constrained by rock physics depth trends , 2003 .

[22]  R. Holt,et al.  Wave Velocities in Shales – A Rock Physics Model , 2003 .

[23]  A. Buland,et al.  Bayesian linearized AVO inversion , 2003 .

[24]  Richard T. Houck,et al.  Quantifying the uncertainty in an AVO interpretation , 2002 .

[25]  Tapan Mukerji,et al.  Mapping lithofacies and pore‐fluid probabilities in a North Sea reservoir: Seismic inversions and statistical rock physics , 2001 .

[26]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[27]  Amos Nur,et al.  Elasticity of high‐porosity sandstones: Theory for two North Sea data sets , 1996 .

[28]  M. Ramm,et al.  Porosity/depth trends in reservoir sandstones: assessing the quantitative effects of varying pore-pressure, temperature history and mineralogy, Norwegian Shelf data , 1994, Clay Minerals.

[29]  M. Ramm Porosity/Depth Trends in Upper Jurassic Reservoirs, Norwegian Central Graben: An Example of Porosity Preservation at Deep Burial by Grain-Coating Micro-Quartz: ABSTRACT , 1994 .

[30]  A. Rose Petroleum-related rock mechanics: E. Fjaer, R.M. Holt, P. Horsrud, A.M. Raaen and R. Risnes. Elsevier, Amsterdam, 1992, 388 pp., Dfl. 215.00/US$110.50 , 1993 .

[31]  E. Fjaer Petroleum Related Rock Mechanics , 1992 .

[32]  Philippe Marie Doyen,et al.  Porosity from seismic data: A geostatistical approach , 1988 .

[33]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[34]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[35]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[36]  F. Gaßmann Uber die Elastizitat poroser Medien. , 1961 .