Efficient Heuristics for Orientation Metric and Euclidean Steiner Tree Problems

AbstractWe consider Steiner minimum trees (SMT) in the plane, where only orientations with angle $${\sigma }$$ , 0 ≤ i ≤ σ − 1 and σ an integer, are allowed. The orientations define a metric, called the orientation metric, λσ, in a natural way. In particular, λ2 metric is the rectilinear metric and the Euclidean metric can beregarded as λ∞ metric. In this paper, we provide a method to find an optimal λσ SMT for 3 or 4 points by analyzing the topology of λσ SMT's in great details. Utilizing these results and based on the idea of loop detection first proposed in Chao and Hsu, IEEE Trans. CAD, vol. 13, no. 3, pp. 303–309, 1994, we further develop an O(n2) time heuristic for the general λσ SMT problem, including the Euclidean metric. Experiments performed on publicly available benchmark data for 12 different metrics, plus the Euclidean metric, demonstrate the efficiency of our algorithms and the quality of our results.

[1]  K. S. Leung,et al.  Steiner tree constructions in λ3-metric , 1998 .

[2]  M. Hanan,et al.  On Steiner’s Problem with Rectilinear Distance , 1966 .

[3]  Martin Zachariasen,et al.  Euclidean Steiner minimum trees: An improved exact algorithm , 1997 .

[4]  S. K. Cheung,et al.  On the Steiner Tree Problem in A3-Metric" , 1997 .

[5]  Chak-Kuen Wong,et al.  On Some Distance Problems in Fixed Orientations , 1987, SIAM J. Comput..

[6]  Chao Ting-Hai,et al.  Rectilinear Steiner tree construction by local and global refinement , 1990, ICCAD 1990.

[7]  Chak-Kuen Wong,et al.  The Steiner Tree Problem in Orientation Metrics , 1997, J. Comput. Syst. Sci..

[8]  D. T. Lee,et al.  On Steiner tree problem with 45/spl deg/ routing , 1995, Proceedings of ISCAS'95 - International Symposium on Circuits and Systems.

[9]  D. T. Lee,et al.  On Steiner Tree Problem with 45 Degree Routing. , 1995 .

[10]  Chak-Kuen Wong,et al.  Hierarchical Steiner tree construction in uniform orientations , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[11]  E. Cockayne On the Steiner Problem , 1967, Canadian Mathematical Bulletin.

[12]  Chak-Kuen Wong,et al.  Distance problems in computational geometry with fixed orientations , 1985, SCG '85.

[13]  H. Pollak,et al.  Steiner Minimal Trees , 1968 .

[14]  John E. Beasley,et al.  A delaunay triangulation-based heuristic for the euclidean steiner problem , 1994, Networks.

[15]  Alice Underwood A modified Melzak procedure for computing node‐weighted Steiner trees , 1996 .

[16]  Andrew B. Kahng,et al.  On the performance bounds for a class of rectilinear Steiner tree heuristics in arbitrary dimension , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[17]  Alice Underwood A modified Melzak procedure for computing node-weighted Steiner trees , 1996, Networks.

[18]  C.K. Wong,et al.  On orientation metric and Euclidean Steiner tree constructions , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[19]  Chak-Kuen Wong,et al.  New algorithms for the rectilinear Steiner tree problem , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[20]  J. Beasley A heuristic for Euclidean and rectilinear Steiner problems , 1992 .

[21]  H. Coxeter,et al.  Introduction to Geometry , 1964, The Mathematical Gazette.

[22]  Ding-Zhu Du,et al.  Reducing the Steiner Problem in a Normed Space , 1992, SIAM J. Comput..