Quantized Self-Assembly of Discotic Rings in a Liquid Crystal Confined in Nanopores.

Disklike molecules with aromatic cores spontaneously stack up in linear columns with high, one-dimensional charge carrier mobilities along the columnar axes, making them prominent model systems for functional, self-organized matter. We show by high-resolution optical birefringence and synchrotron-based x-ray diffraction that confining a thermotropic discotic liquid crystal in cylindrical nanopores induces a quantized formation of annular layers consisting of concentric circular bent columns, unknown in the bulk state. Starting from the walls this ring self-assembly propagates layer by layer towards the pore center in the supercooled domain of the bulk isotropic-columnar transition and thus allows one to switch on and off reversibly single, nanosized rings through small temperature variations. By establishing a Gibbs free energy phase diagram we trace the phase transition quantization to the discreteness of the layers' excess bend deformation energies in comparison to the thermal energy, even for this near room-temperature system. Monte Carlo simulations yielding spatially resolved nematic order parameters, density maps, and bond-orientational order parameters corroborate the universality and robustness of the confinement-induced columnar ring formation as well as its quantized nature.

[1]  D A Weitz,et al.  Grain Boundary Scars and Spherical Crystallography , 2003, Science.

[2]  Jun-ichi Fukuda,et al.  Ring defects in a strongly confined chiral liquid crystal. , 2011, Physical review letters.

[3]  P. Oswald,et al.  Smectic and columnar liquid crystals : concepts and physical properties illustrated by experiments , 2005 .

[4]  G. Ungar,et al.  Diverse configurations of columnar liquid crystals in cylindrical nano- and micropores. , 2017, Soft matter.

[5]  Sabine Laschat,et al.  Discotic Liquid Crystals. , 2016, Chemical reviews.

[6]  K. Knorr,et al.  Continuous paranematic-to-nematic ordering transitions of liquid crystals in tubular silica nanochannels. , 2008, Physical review letters.

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  M. Fröba,et al.  Hierarchically Structured MCM-41 Silica Beads via Nanocasting in Combination with “Pore-protected” Pseudomorphic Transformation , 2014 .

[9]  G. R. Luckhurst,et al.  Computer simulation studies of anisotropic systems. XXVI. Monte Carlo investigations of a Gay–Berne discotic at constant pressure , 1996 .

[10]  Sandeep Kumar,et al.  Discotic nematic liquid crystals: science and technology. , 2010, Chemical Society reviews.

[11]  K. Knorr,et al.  Adsorption-desorption isotherms and x-ray diffraction of Ar condensed into a porous glass matrix , 1999 .

[12]  M. Steinhart,et al.  Liquid crystalline nanowires in porous alumina: geometric confinement versus influence of pore walls. , 2005, Nano letters.

[13]  L. N. Acquaroli,et al.  Capillary filling in nanostructured porous silicon. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[14]  F. Emmerling,et al.  Vibrational density of states of triphenylene based discotic liquid crystals: dependence on the length of the alkyl chain. , 2014, Physical chemistry chemical physics : PCCP.

[15]  H. Butt,et al.  Arrays of aligned supramolecular wires by macroscopic orientation of columnar discotic mesophases. , 2012, ACS nano.

[16]  Nelson,et al.  Density-functional theory of nematic and smectic-A order near surfaces. , 1988, Physical review. A, General physics.

[17]  Wojciech Pisula,et al.  Discotic liquid crystals: a new generation of organic semiconductors. , 2007, Chemical Society reviews.

[18]  D. Morineau,et al.  Thermotropic orientational order of discotic liquid crystals in nanochannels: an optical polarimetry study and a Landau-de Gennes analysis. , 2014, Soft matter.

[19]  M. Steinhart,et al.  Honeycombs in honeycombs: complex liquid crystal alumina composite mesostructures. , 2014, ACS nano.

[20]  R. Friend,et al.  Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. , 2001, Science.

[21]  D Richter,et al.  Direct observation of confined single chain dynamics by neutron scattering. , 2010, Physical review letters.

[22]  A. Cammidge,et al.  Chemistry of Discotic Liquid Crystals: From Monomers to Polymers , 2011 .

[23]  D. W. Berreman,et al.  Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal , 1972 .

[24]  J. Ryckaert,et al.  Influence of shape and energy anisotropies on the phase diagram of discotic molecules. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  M. Fukuto,et al.  Wetting of liquid-crystal surfaces and induced smectic layering at a nematic-liquid interface: an x-ray reflectivity study. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  D. Yoon,et al.  Liquid crystal phases in confined geometries , 2016 .

[27]  P. Sheng Phase Transition in Surface-Aligned Nematic Films , 1976 .

[28]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[29]  Wang,et al.  Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.

[30]  H. Christenson Confinement effects on freezing and melting , 2001 .

[31]  M. Steinhart,et al.  A ferroelectric liquid crystal confined in cylindrical nanopores: reversible smectic layer buckling, enhanced light rotation and extremely fast electro-optically active Goldstone excitations. , 2017, Nanoscale.

[32]  Michael W Deem,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[33]  Adam,et al.  Transient photoconductivity in a discotic liquid crystal. , 1993, Physical review letters.

[34]  M. P. Allen,et al.  Liquid crystals in complex geometries formed by polymer and porous networks , 1995 .

[35]  D. A. Vega,et al.  Semiflexible Polymers in Spherical Confinement: Bipolar Orientational Order Versus Tennis Ball States. , 2017, Physical review letters.

[36]  P. Huber Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  J. Biener,et al.  Nanoporous Metals with Structural Hierarchy: A Review , 2017 .

[38]  T. Kraus,et al.  Self-assembly of gold nanoparticles at the oil-vapor interface: from mono- to multilayers. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[39]  Sandeep Kumar Discotic liquid crystal-nanoparticle hybrid systems , 2014 .

[40]  D. Richter,et al.  Evidence of a Sticky Boundary Layer in Nanochannels: A Neutron Spin Echo Study of n-Hexatriacontane and Poly(ethylene oxide) Confined in Porous Silicon , 2010 .

[41]  J. Venables,et al.  Progress in the measurement and modeling of physisorbed layers , 2007 .

[42]  V. Percec,et al.  Columnar liquid crystals in cylindrical nanoconfinement. , 2015, ACS nano.

[43]  Andrey G. Cherstvy,et al.  Inverted critical adsorption of polyelectrolytes in confinement. , 2015, Soft matter.

[44]  H. Schulte-Schrepping,et al.  The high-resolution diffraction beamline P08 at PETRA III. , 2012, Journal of synchrotron radiation.

[45]  F. Giesselmann,et al.  Chiral Structures from Achiral Micellar Lyotropic Liquid Crystals under Capillary Confinement. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[46]  Kurt Kremer,et al.  Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. , 2009, Nature materials.

[47]  N. Bernstein,et al.  Adsorption-induced deformation of nanoporous materials—A review , 2017 .

[48]  A. De Luca,et al.  Direct measurement of surface-induced orientational order parameter profile above the nematic-isotropic phase transition temperature. , 2009, Physical review letters.

[49]  Tom C. Lubensky,et al.  Chiral structures from achiral liquid crystals in cylindrical capillaries , 2015, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Ocko Smectic-layer growth at solid interfaces. , 1990, Physical review letters.

[51]  H. Yokoyama,et al.  Capillary condensation in liquid-crystal colloids. , 2004, Physical Review Letters.

[52]  D. Morineau,et al.  High-resolution dielectric study reveals pore-size-dependent orientational order of a discotic liquid crystal confined in tubular nanopores. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Doane,et al.  Curvature-induced configuration transition in confined nematic liquid crystals. , 1993, Physical review letters.

[54]  P. Huber,et al.  Imbibition in mesoporous silica: rheological concepts and experiments on water and a liquid crystal , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[55]  H. Bock,et al.  Anchoring transition in confined discotic columnar liquid crystal films , 2011 .

[56]  M. Schoen,et al.  Defect topologies in chiral liquid crystals confined to mesoscopic channels. , 2015, The Journal of chemical physics.

[57]  C. Wöll,et al.  Surface-supported metal-organic framework thin films: fabrication methods, applications, and challenges. , 2017, Chemical Society reviews.

[58]  Christoph Dellago,et al.  Accurate determination of crystal structures based on averaged local bond order parameters. , 2008, The Journal of chemical physics.

[59]  K. Binder,et al.  Anomalous Fluctuations of Nematic Order in Solutions of Semiflexible Polymers. , 2016, Physical review letters.

[60]  F. Charra,et al.  Surface-Induced Chirality in a Self-Assembled Monolayer of Discotic Liquid Crystal , 1998 .

[61]  Kurt Binder,et al.  Confinement effects on phase behavior of soft matter systems. , 2008, Soft matter.

[62]  R. Pelster,et al.  Continuous freezing of argon in completely filled mesopores. , 2013, Physical review letters.

[63]  D. Caprion Discotic molecules in cylindrical nanopores: A Monte Carlo study , 2009, The European physical journal. E, Soft matter.

[64]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[65]  K. Gubbins,et al.  Effects of confinement on freezing and melting , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[66]  Andrew G. Glen,et al.  APPL , 2001 .

[67]  A. Kityk,et al.  Molecular ordering of the discotic liquid crystal HAT6 confined in mesoporous solids , 2014 .

[68]  Alessandro Troisi,et al.  Charge transport in semiconductors with multiscale conformational dynamics. , 2009, Physical review letters.

[69]  G. Crawford,et al.  Surface ordering transitions at a liquid crystal-solid interface above the isotropic smectic-A transition. , 2003, Physical review letters.

[70]  R. J. Luyken,et al.  Spectroscopy of nanoscopic semiconductor rings. , 1999, Physical review letters.

[71]  J. Pablo,et al.  Hyper-parallel tempering Monte Carlo: Application to the Lennard-Jones fluid and the restricted primitive model , 1999 .

[72]  P. Huber,et al.  Knudsen diffusion in silicon nanochannels. , 2008, Physical review letters.

[73]  P. Fratzl,et al.  Surfactant Self-Assembly in Cylindrical Silica Nanopores , 2010 .

[74]  Deutsch,et al.  Quantized layer growth at liquid-crystal surfaces. , 1986, Physical review letters.

[75]  Baohui Li,et al.  Confinement-induced novel morphologies of block copolymers. , 2006, Physical review letters.

[76]  J. Géminard,et al.  Surface Tension and Elasticity of Hexagonal Columnar Mesophases , 1995 .

[77]  T. Wassmer 6 , 1900, EXILE.

[78]  K. Knorr,et al.  Quenching of lamellar ordering in an n-alkane embedded in nanopores , 2004, cond-mat/0402156.