Review of Flexible Temperature Sensing Networks for Wearable Physiological Monitoring

Physiological temperature varies temporally and spatially. Accurate and real-time detection of localized temperature changes in biological tissues regardless of large deformation is crucial to understand thermal principle of homeostasis, to assess sophisticated health conditions, and further to offer possibilities of building a smart healthcare and medical system. Additionally, continuous temperature mapping in flexible and stretchable formats opens up many other potential areas, such as artificially electronic skins and reflection of emotional changes. This review exploits a comprehensive investigation onto recent advances in flexible temperature sensors, stretchable sensor networks, and platforms constructed in soft and compliant formats for wearable physiological monitoring. The most recent examples of flexible temperature sensors are first discussed regarding to their materials, structures, electrical and mechanical properties; temperature sensing network technologies in new materials and structural designs are then presented based on platforms comprised of multiple physical sensors and stretchable electronics. Finally, wearable applications of the sensing network are described, such as detection of human activities, monitoring of health conditions, and emotion-related bodily sensations. Conclusions are made with emphasis on critical issues and new trends in the field of wearable temperature sensor network technologies.

[1]  Thin-film electrochemical sensor electrode for rapid evaluation of electrolytic conductivity, cyclic voltammetry, and temperature measurements , 2015, Journal of Applied Electrochemistry.

[2]  Benjamin C. K. Tee,et al.  Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. , 2010, Nature materials.

[3]  Yan Li,et al.  Poisson Ratio and Piezoresistive Sensing: A New Route to High‐Performance 3D Flexible and Stretchable Sensors of Multimodal Sensing Capability , 2016 .

[4]  J. Vanfleteren,et al.  Design and Fabrication of Elastic Interconnections for Stretchable Electronic Circuits , 2007, IEEE Electron Device Letters.

[5]  P. K. Hari,et al.  Woven Textile Structure: Theory and Applications , 2010 .

[6]  G. Tröster,et al.  Encapsulation for Flexible Electronic Devices , 2011, IEEE Electron Device Letters.

[7]  Huimin Xie,et al.  Micro-scale delaminating and buckling of thin film on soft substrate , 2013 .

[8]  Moinuddin Ahmed,et al.  Temperature Sensor in a Flexible Substrate , 2012, IEEE Sensors Journal.

[9]  Seungyong Han,et al.  Mechanically Reinforced Skin‐Electronics with Networked Nanocomposite Elastomer , 2016, Advanced materials.

[10]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[11]  Se Hyuk Im Wrinkling of elatic thin films on compliant substrates , 2009 .

[12]  G. Tröster,et al.  Enabling Technologies for Electrical Circuits on a Woven Monofilament Hybrid Fabric , 2008 .

[13]  Chi-Yuan Lee,et al.  In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors , 2011, Sensors.

[14]  Xiaoming Tao,et al.  A Transparent, Flexible, Low‐Temperature, and Solution‐Processible Graphene Composite Electrode , 2010 .

[15]  Peng Liu,et al.  A Flexible Flow Sensor System and Its Characteristics for Fluid Mechanics Measurements , 2009, Sensors.

[16]  Chiara Bartolozzi,et al.  Robots with a sense of touch. , 2016, Nature materials.

[17]  Yonggang Huang,et al.  A curvy, stretchy future for electronics , 2009, Proceedings of the National Academy of Sciences.

[18]  H. H. Pennes Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948. , 1948, Journal of applied physiology.

[19]  Jing Liu,et al.  Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics , 2004, Comput. Biol. Medicine.

[20]  Sundaresan Jayaraman,et al.  The Wearable Motherboard™: The first generation of adaptive and responsive textile structures (ARTS) for medical applications , 1999, Virtual Reality.

[21]  Guggi Kofod,et al.  Soft Conductive Elastomer Materials for Stretchable Electronics and Voltage Controlled Artificial Muscles , 2013, Advanced materials.

[22]  S. Lam Po Tang,et al.  Recent developments in flexible wearable electronics for monitoring applications , 2007 .

[23]  Bin Liu,et al.  Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices. , 2014, ChemSusChem.

[24]  Xiaoming Tao,et al.  A stretchable knitted interconnect for three-dimensional curvilinear surfaces , 2011 .

[25]  Z. Suo,et al.  Design and performance of thin metal film interconnects for skin-like electronic circuits , 2004, IEEE Electron Device Letters.

[26]  Wanchul Seung,et al.  Active Matrix Electronic Skin Strain Sensor Based on Piezopotential‐Powered Graphene Transistors , 2015, Advanced materials.

[27]  Yonggang Huang,et al.  Stretchable and compressible thin films of stiff materials on compliant wavy substrates , 2008 .

[28]  A. Kingon,et al.  Flexible thin film temperature and strain sensor array utilizing a novel sensing concept , 2007 .

[29]  Suda Kiatkamjornwong,et al.  Comparison of textile print quality between inkjet and screen printings , 2005 .

[30]  Sigurd Wagner,et al.  Mechanisms of reversible stretchability of thin metal films on elastomeric substrates , 2006 .

[31]  Nasser N Peyghambarian,et al.  Application of Screen Printing in the Fabrication of Organic Light‐Emitting Devices , 2000 .

[32]  Steve Beeby,et al.  An investigation into the durability of screen-printed conductive tracks on textiles , 2014 .

[33]  Jonathan A. Fan,et al.  Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems , 2013, Nature Communications.

[34]  M. Gijs,et al.  Miniaturised Flexible Temperature Sensor , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[35]  Youngjin Jeong,et al.  Highly Sensitive and Multimodal All‐Carbon Skin Sensors Capable of Simultaneously Detecting Tactile and Biological Stimuli , 2015, Advanced materials.

[36]  Benjamin C. K. Tee,et al.  25th Anniversary Article: The Evolution of Electronic Skin (E‐Skin): A Brief History, Design Considerations, and Recent Progress , 2013, Advanced materials.

[37]  Christopher S. Chen,et al.  High‐Conductivity Elastomeric Electronics , 2004 .

[38]  S. Wagner,et al.  An elastically stretchable TFT circuit , 2004, IEEE Electron Device Letters.

[39]  John F. Muth,et al.  Woven Fabric-Based Electrical Circuits , 2004 .

[40]  C. W. Yu,et al.  Comparing the accuracy of skin sensor temperature at two placement sites to axillary temperature in term infants under radiant warmers , 2016 .

[41]  Lin Zhang,et al.  In-fiber Bragg-grating temperature sensor system for medical applications , 1997 .

[42]  Sigurd Wagner,et al.  Stretchable Interconnects for Elastic Electronic Surfaces , 2005, Proceedings of the IEEE.

[43]  Qiao Li,et al.  Three-dimensionally deformable, highly stretchable, permeable, durable and washable fabric circuit boards , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  Hung-Chang Jau,et al.  Highly sensitive optical temperature sensor based on a SiN micro-ring resonator with liquid crystal cladding. , 2016, Optics express.

[45]  Dong Liu,et al.  Semiconductor Nanomembrane-Based Light-Emitting and Photodetecting Devices , 2016 .

[46]  John A. Rogers,et al.  Complementary metal oxide silicon integrated circuits incorporating monolithically integrated stretchable wavy interconnects , 2008 .

[47]  S. Leonhardt,et al.  Characterization of textile electrodes and conductors using standardized measurement setups , 2010, Physiological measurement.

[48]  Z. Suo,et al.  Metal films on polymer substrates stretched beyond 50 , 2007 .

[49]  G. Troster,et al.  Fundamental Building Blocks for Circuits on Textiles , 2007, IEEE Transactions on Advanced Packaging.

[50]  Benjamin C. K. Tee,et al.  Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring , 2013, Nature Communications.

[51]  Nae-Eung Lee,et al.  An All‐Elastomeric Transparent and Stretchable Temperature Sensor for Body‐Attachable Wearable Electronics , 2016, Advanced materials.

[52]  Yan Ma,et al.  Thermally Stable, Biocompatible, and Flexible Organic Field‐Effect Transistors and Their Application in Temperature Sensing Arrays for Artificial Skin , 2015 .

[53]  L. Van Langenhove,et al.  Steps Towards a Textile-Based Transistor: Development of the Gate and Insulating Layer , 2010 .

[54]  T. Kannaian,et al.  Design and development of embroidered textile electrodes for continuous measurement of electrocardiogram signals , 2013 .

[55]  M. Dickey,et al.  Ultrastretchable Fibers with Metallic Conductivity Using a Liquid Metal Alloy Core , 2013 .

[56]  Muhammad Mustafa Hussain,et al.  Stretchable Helical Architecture Inorganic-Organic Hetero Thermoelectric Generator , 2016 .

[57]  A. Hussain,et al.  Deterministic Integration of Out-of-Plane Sensor Arrays for Flexible Electronic Applications. , 2016, Small.

[58]  Benjamin C. K. Tee,et al.  Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. , 2011, Nature nanotechnology.

[59]  J. Jang,et al.  Highly Sensitive and Multifunctional Tactile Sensor Using Free-standing ZnO/PVDF Thin Film with Graphene Electrodes for Pressure and Temperature Monitoring , 2015, Scientific Reports.

[60]  Lei Jiang,et al.  Polymer in situ embedding for highly flexible, stretchable and water stable PEDOT:PSS composite conductors , 2013 .

[61]  K. Fan,et al.  A 32 × 32 temperature and tactile sensing array using PI-copper films , 2010 .

[62]  J. Vanfleteren,et al.  Stretchable Electronics Technology for Large Area Applications: Fabrication and Mechanical Characterization , 2013, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[63]  Shuodao Wang Mechanics of Curvilinear Electronics and Transfer Printing , 2012 .

[64]  Atif Shamim,et al.  Metal/Polymer Based Stretchable Antenna for Constant Frequency Far‐Field Communication in Wearable Electronics , 2015 .

[65]  S. H. Choy,et al.  Highly durable all-fiber nanogenerator for mechanical energy harvesting , 2013 .

[66]  G. Tröster,et al.  Woven Electronic Fibers with Sensing and Display Functions for Smart Textiles , 2010, Advanced materials.

[67]  K. Mabuchi,et al.  Ultraflexible, large-area, physiological temperature sensors for multipoint measurements , 2015, Proceedings of the National Academy of Sciences.

[68]  E. Zehe,et al.  Low‐cost monitoring of snow height and thermal properties with inexpensive temperature sensors , 2011 .

[69]  Dae Hyeong Kim Materials strategies and devices for flexible and stretchable electronics , 2009 .

[70]  John A. Rogers,et al.  Silicon Nanomembranes: Fundamental Science and Applications , 2016 .

[71]  John A. Rogers,et al.  Materials for stretchable electronics in bioinspired and biointegrated devices , 2012 .

[72]  Kishor Kumar Sadasivuni,et al.  Reduced graphene oxide filled cellulose films for flexible temperature sensor application , 2015 .

[73]  Ilja Belov,et al.  Experimental analysis and modelling of textile transmission line for wearable applications , 2007 .

[74]  S. Wagner,et al.  Fully elastic interconnects on nanopatterned elastomeric substrates , 2006, IEEE Electron Device Letters.

[75]  Zhibin Yu,et al.  Elastomeric polymer light-emitting devices and displays , 2013, Nature Photonics.

[76]  Brian Sangeorzan,et al.  Design of a Non-Invasive Optical Fiber Sensor for In Situ Measurement of Temperature in a Proton Exchange Membrane Fuel Cell , 2013 .

[77]  Heung Cho Ko,et al.  Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. , 2009, Small.

[78]  T. Someya,et al.  Stretchable, Large‐area Organic Electronics , 2010, Advanced materials.

[79]  John A Rogers,et al.  Controlled buckling of semiconductor nanoribbons for stretchable electronics , 2006, Nature nanotechnology.

[80]  I. Kazani,et al.  Electrical Conductive Textiles Obtained by Screen Printing , 2012 .

[81]  M. Bendahan,et al.  Temperature sensor realized by inkjet printing process on flexible substrate , 2016 .

[82]  Masashi Watanabe Wrinkles formed on a thin gold film deposited onto stretched elastic substrates , 2005 .

[83]  John F. Muth,et al.  Woven Fabric-Based Electrical Circuits , 2004 .

[84]  Shengyong Xu,et al.  An Extremely Simple Thermocouple Made of a Single Layer of Metal , 2012, Advanced materials.

[85]  Torsten Linz,et al.  Contacting electronics to fabric circuits with nonconductive adhesive bonding , 2012 .

[86]  Q. Wang,et al.  Fast Fabrication of Flexible Functional Circuits Based on Liquid Metal Dual‐Trans Printing , 2015, Advanced materials.

[87]  John A. Rogers,et al.  Mechanics of curvilinear electronics , 2010 .

[88]  Amine Bermak,et al.  A 1.1 $\mu \text{W}$ CMOS Smart Temperature Sensor With an Inaccuracy of ±0.2 °C ( ${3}\sigma )$ for Clinical Temperature Monitoring , 2016, IEEE Sensors Journal.

[89]  Qiao Li,et al.  In-Shoe Plantar Pressure Measurement and Analysis System Based on Fabric Pressure Sensing Array , 2010, IEEE Transactions on Information Technology in Biomedicine.

[90]  Qing Chen,et al.  A nano-stripe based sensor for temperature measurement at the submicrometer and nano scales. , 2014, Small.

[91]  L. V. Pieterson,et al.  Smart textiles: Challenges and opportunities , 2012 .

[92]  L. Castano,et al.  Smart fabric sensors and e-textile technologies: a review , 2014 .

[93]  Chi-Yuan Lee,et al.  Use of flexible micro-temperature sensor to determine temperature in situ and to simulate a proton exchange membrane fuel cell , 2011 .

[94]  Shuo-Hung Chang,et al.  An integrated flexible temperature and tactile sensing array using PI-copper films ☆ , 2008 .

[95]  Nicola Pugno,et al.  Multifunctionality and Control of the Crumpling and Unfolding of Large-Area Graphene , 2012, Nature materials.

[96]  Katsuaki Suganuma,et al.  Stretchable fine fiber with high conductivity fabricated by injection forming , 2011 .

[97]  C. S. Chen,et al.  High‐Conductivity Elastomeric Electronics (Adv. Mater. 2004, 16, 393.) , 2004 .

[98]  Ting Wang,et al.  Soft Thermal Sensor with Mechanical Adaptability , 2016, Advanced materials.

[99]  Chi-Yuan Lee,et al.  Fabrication of a Flexible Micro Temperature Sensor for Micro Reformer Applications , 2011, Sensors.

[100]  Lufeng Che,et al.  A novel fabrication process of MEMS devices on polyimide flexible substrates , 2008 .

[101]  X. Tao Wearable Electronics and Photonics , 2005 .

[102]  Enzo Pasquale Scilingo,et al.  Strain-sensing fabrics for wearable kinaesthetic-like systems , 2003 .

[103]  John A Rogers,et al.  Bend, buckle, and fold: mechanical engineering with nanomembranes. , 2009, ACS nano.

[104]  Reprint of “Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates” [In. J. Solids Struct. 45 (2008) 2014–2023] , 2008 .

[105]  Jong-Hyun Ahn,et al.  Stretchable electronics: materials, architectures and integrations , 2012 .

[106]  J. Zunino,et al.  Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[107]  X. Tao,et al.  Fiber‐Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications , 2014, Advanced materials.

[108]  J. Rogers,et al.  Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates , 2010, Nanotechnology.

[109]  A. Hübler,et al.  Fully Inkjet-Printed Flexible Temperature Sensors Based on Carbon and PEDOT:PSS1☆ , 2016 .

[110]  Jian Wu,et al.  Mechanics of stretchable electronics with high fill factors , 2012 .

[111]  I. Park,et al.  Stretchable, Skin‐Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review , 2016 .

[112]  Maciej Sibiński,et al.  Polymer temperature sensor for textronic applications , 2009 .

[113]  T. Trung,et al.  Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human‐Activity Monitoringand Personal Healthcare , 2016, Advanced materials.

[114]  Zhenqiang Ma,et al.  Stretchable Twisted‐Pair Transmission Lines for Microwave Frequency Wearable Electronics , 2016 .

[115]  Takao Someya,et al.  A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[116]  E. Scilingo,et al.  Polymer based interfaces as bioinspired 'smart skins'. , 2005, Advances in colloid and interface science.

[117]  Weidong Zhou,et al.  Capacitance-voltage characteristics of Si and Ge nanomembrane based flexible metal-oxide-semiconductor devices under bending conditions , 2016 .

[118]  Leandro Lorenzelli,et al.  Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review , 2015, IEEE Sensors Journal.

[119]  Ha Beom Lee,et al.  Room‐Temperature Nanosoldering of a Very Long Metal Nanowire Network by Conducting‐Polymer‐Assisted Joining for a Flexible Touch‐Panel Application , 2013 .

[120]  Di Zhang,et al.  Bioinspired Engineering of Thermal Materials , 2015, Advanced materials.

[121]  Danilo De Rossi,et al.  Electroactive polymer-based devices for e-textiles in biomedicine , 2005, IEEE Transactions on Information Technology in Biomedicine.

[122]  John A Rogers,et al.  Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature , 2016, Advanced healthcare materials.

[123]  Fang Zhang,et al.  Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors , 2012, Nano Research.

[124]  C. Du,et al.  Wearable temperature sensor based on graphene nanowalls , 2015 .

[125]  Dries Vande Ginste,et al.  Stability and Efficiency of Screen-Printed Wearable and Washable Antennas , 2012, IEEE Antennas and Wireless Propagation Letters.

[126]  C. K. Cheng,et al.  Biaxially stretchable silver nanowire transparent conductors , 2013 .

[127]  Yonggang Huang,et al.  Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. , 2010, Nature materials.

[128]  Seungjun Chung,et al.  Lateral-crack-free, buckled, inkjet-printed silver electrodes on highly pre-stretched elastomeric substrates , 2013 .

[129]  Kuang-Chao Fan,et al.  Flexible Temperature Sensor Array Based on a Graphite-Polydimethylsiloxane Composite , 2010, Sensors.

[130]  Yi Cui,et al.  Energy and environmental nanotechnology in conductive paper and textiles , 2012 .

[131]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[132]  T. Itoh,et al.  Fabric pressure sensor array fabricated with die-coating and weaving techniques , 2012 .

[133]  G. Troster,et al.  Electrical characterization of textile transmission lines , 2003 .

[134]  Xiaodong Chen,et al.  Flexible and Stretchable Devices , 2016, Advanced materials.

[135]  Jing Liu,et al.  Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications , 2016, Micromachines.

[136]  Kylie Peppler,et al.  Stitching Circuits: Learning About Circuitry Through E-textile Materials , 2013 .

[137]  R. Ghaffari,et al.  Recent Advances in Flexible and Stretchable Bio‐Electronic Devices Integrated with Nanomaterials , 2016, Advanced materials.

[138]  Wenzhe Cao Fabrication and modeling of stretchable conductors for traumatic brain injury research , 2013 .

[139]  Sungmee Park,et al.  Smart Textiles: Wearable Electronic Systems , 2003 .

[140]  Z. Suo,et al.  Stretchability of thin metal films on elastomer substrates , 2004 .

[141]  J. Rogers,et al.  Stretchable Inorganic‐Semiconductor Electronic Systems , 2011, Advanced materials.

[142]  Chi-Yuan Lee,et al.  In Situ Measurement of the Junction Temperature of Light Emitting Diodes Using a Flexible Micro Temperature Sensor , 2009, Sensors.

[143]  Sungryul Yun,et al.  Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite , 2011 .

[144]  Gengchao Wang,et al.  The influence of crystalline and aggregate structure on PTC characteristic of conductive polyethylene/carbon black composite , 1998 .

[145]  J. Vanfleteren,et al.  Design and performance of metal conductors for stretchable electronic circuits , 2008, 2008 2nd Electronics System-Integration Technology Conference.

[146]  P. Yoo,et al.  Wave interactions in buckling: Self-organization of a metal surface on a structured polymer layer , 2004 .

[147]  Marcello Ferro,et al.  A Sensing Seat for Human Authentication , 2009, IEEE Transactions on Information Forensics and Security.

[148]  Jing Liu,et al.  Infrared Thermal Imaging System on a Mobile Phone , 2015, Sensors.

[149]  Yang Li,et al.  Breathable and Wearable Energy Storage Based on Highly Flexible Paper Electrodes , 2016, Advanced materials.

[150]  X. Tao,et al.  Conductive knitted fabric as large-strain gauge under high temperature , 2006 .

[151]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[152]  J. Hietanen,et al.  Bodily maps of emotions , 2013, Proceedings of the National Academy of Sciences.

[153]  John A Rogers,et al.  Design of Strain‐Limiting Substrate Materials for Stretchable and Flexible Electronics , 2016, Advanced functional materials.

[154]  B. K. Behera,et al.  Woven textile structure , 2010 .

[155]  Steve Beeby,et al.  Screen printed fabric electrode array for wearable functional electrical stimulation , 2014 .

[156]  Hossam Haick,et al.  Self‐Healing, Fully Functional, and Multiparametric Flexible Sensing Platform , 2016, Advanced materials.

[158]  Yonggang Huang,et al.  Biaxially stretchable "wavy" silicon nanomembranes. , 2007, Nano letters.

[159]  Gerhard Tröster,et al.  Combining electronics on flexible plastic strips with textiles , 2013 .

[160]  J. Yin,et al.  Fabric-based flexible electrode with multi-walled carbon nanotubes@Ni network structure as a novel anode for hydrogen peroxide electrooxidation , 2014 .

[161]  X. Yi,et al.  Thermal volume expansion in polymeric PTC composites: a theoretical approach , 2001 .

[162]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[163]  John A. Rogers,et al.  Buckled and Wavy Ribbons of GaAs for High‐Performance Electronics on Elastomeric Substrates , 2006 .

[164]  Jelka Geršak,et al.  Development of a mathematical model for the heat transfer of the system man – clothing – environment , 2007 .

[165]  Z. Suo,et al.  Stretchable gold conductors on elastomeric substrates , 2003 .

[166]  Andrea Ridolfi,et al.  BIOTEX—Biosensing Textiles for Personalised Healthcare Management , 2010, IEEE Transactions on Information Technology in Biomedicine.

[167]  G. Martínez,et al.  University of Puerto Rico – Mayagüez Campus College of Agricultural Sciences Department of Agronomy and Soils Department of Agricultural and Biosystems Engineering Nutrient Discharges from Mayagüez Bay Watershed FINAL PROGRESS REPORT , 2004 .

[168]  John A. Rogers,et al.  Mechanical Buckling: Mechanics, Metrology, and Stretchable Electronics , 2009 .

[169]  Z. Bao,et al.  Flexible Wireless Temperature Sensors Based on Ni Microparticle‐Filled Binary Polymer Composites , 2013, Advanced materials.

[170]  Bart Vandevelde,et al.  Design of Metal Interconnects for Stretchable Electronic Circuits using Finite Element Analysis , 2007, 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems. EuroSime 2007.

[171]  D. Markelov,et al.  Unexpected Temperature Behavior of Polyethylene Glycol Spacers in Copolymer Dendrimers in Chloroform , 2016, Scientific Reports.

[172]  Neil Gershenfeld,et al.  E-broidery: Design and fabrication of textile-based computing , 2000, IBM Syst. J..

[173]  Joanna M Nassar,et al.  Ultrastretchable and Flexible Copper Interconnect‐Based Smart Patch for Adaptive Thermotherapy , 2015, Advanced healthcare materials.

[174]  J. Rogers,et al.  Stretchable Electronics: Materials Strategies and Devices , 2008 .

[175]  Dae-Hyeong Kim,et al.  Multifunctional wearable devices for diagnosis and therapy of movement disorders. , 2014, Nature nanotechnology.

[176]  Maciej Sibinski,et al.  Flexible Temperature Sensors on Fibers , 2010, Sensors.

[177]  Ozgur Atalay,et al.  Textile-Based Weft Knitted Strain Sensors: Effect of Fabric Parameters on Sensor Properties , 2013, Sensors.

[178]  Huanyu Cheng,et al.  Erratum: Ultrathin conformal devices for precise and continuous thermal characterization of human skin (Nature Materials (2013) 12 (938-944)) , 2013 .

[179]  John A. Rogers,et al.  Mechanics of noncoplanar mesh design for stretchable electronic circuits , 2009 .

[180]  Seiji Akita,et al.  Toward Flexible and Wearable Human‐Interactive Health‐Monitoring Devices , 2015, Advanced healthcare materials.

[181]  T. Trung,et al.  A Flexible Bimodal Sensor Array for Simultaneous Sensing of Pressure and Temperature , 2014, Advanced materials.

[182]  Huisheng Peng,et al.  Smart, Stretchable Supercapacitors , 2014, Advanced materials.

[183]  U. Chung,et al.  Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array , 2014, Advanced materials.

[184]  A. Boudaoud,et al.  The Buckling of a Swollen Thin Gel Layer Bound to a Compliant Substrate , 2007, cond-mat/0701640.

[186]  Analysis of the Three-Dimensional Delamination Behavior of Stretchable Electronics Applications , 2009 .

[187]  L. Lack,et al.  Relationships between the Circadian Rhythms of Finger Temperature, Core Temperature, Sleep Latency, and Subjective Sleepiness , 2004, Journal of biological rhythms.

[188]  Jan Genzer,et al.  Soft matter with hard skin: From skin wrinkles to templating and material characterization. , 2006, Soft matter.

[189]  R. Trask,et al.  4D sequential actuation: combining ionoprinting and redox chemistry in hydrogels , 2016 .

[190]  Yuanyuan Shang,et al.  Elastic carbon nanotube straight yarns embedded with helical loops. , 2013, Nanoscale.

[191]  Tingting Li,et al.  A Dual Role of Graphene Oxide Sheet Deposition on Titanate Nanowire Scaffolds for Osteo-implantation: Mechanical Hardener and Surface Activity Regulator , 2015, Scientific Reports.

[192]  J. Rogers,et al.  Structural forms of single crystal semiconductor nanoribbons for high-performance stretchable electronics , 2007 .

[193]  Xiaochen Ren,et al.  A Low‐Operating‐Power and Flexible Active‐Matrix Organic‐Transistor Temperature‐Sensor Array , 2016, Advanced materials.

[194]  Geert Langereis,et al.  Contactless EMG sensors embroidered onto textile , 2007, BSN.

[195]  Qingwen Li,et al.  Carbon‐Nanotube Fibers for Wearable Devices and Smart Textiles , 2016, Advanced materials.

[196]  J. Rogers,et al.  Electrically interconnected assemblies of microscale device components by printing and molding , 2009 .

[197]  Ying-Chih Lai,et al.  Electric Eel‐Skin‐Inspired Mechanically Durable and Super‐Stretchable Nanogenerator for Deformable Power Source and Fully Autonomous Conformable Electronic‐Skin Applications , 2016, Advanced materials.

[198]  X. Duan,et al.  Graphene: An Emerging Electronic Material , 2012, Advanced materials.

[199]  T. Ren,et al.  A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range , 2015, Scientific Reports.

[200]  Yong Ju Park,et al.  Graphene‐Based Flexible and Stretchable Electronics , 2016, Advanced materials.

[201]  Lin Jia,et al.  Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin , 2014, Nature Communications.

[202]  Gerhard Tröster,et al.  Screen-printed Textile Transmission Lines , 2007 .

[203]  John A Rogers,et al.  Optimized structural designs for stretchable silicon integrated circuits. , 2009, Small.

[204]  Liang Guo,et al.  High‐Density Stretchable Electronics: Toward an Integrated Multilayer Composite , 2010, Advanced materials.

[205]  K. Dai,et al.  Anomalous attenuation of the positive temperature coefficient of resistivity in a carbon-black-filled polymer composite with electrically conductive in situ microfibrils , 2006 .

[206]  John A Rogers,et al.  Lateral buckling mechanics in silicon nanowires on elastomeric substrates. , 2009, Nano letters.

[207]  Wei Lu,et al.  Controlled 3D buckling of silicon nanowires for stretchable electronics. , 2011, ACS nano.

[208]  Ginu Rajan,et al.  Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials , 2016, Sensors.

[209]  Martin Wolf,et al.  Textile integrated sensors and actuators for near-infrared spectroscopy. , 2013, Optics express.

[210]  Weidong Zhou,et al.  Fast Flexible Transistors with a Nanotrench Structure , 2016, Scientific Reports.

[211]  Arezki Boudaoud,et al.  The macroscopic delamination of thin films from elastic substrates , 2009, Proceedings of the National Academy of Sciences.

[212]  Baoling Huang,et al.  High Dynamic Range Organic Temperature Sensor , 2013, Advanced materials.

[213]  Qiao Li Packaging of fabric sensing network with flexible and stretchable electronic components , 2014 .

[214]  Muhammad Mustafa Hussain,et al.  Paper-based origami flexible and foldable thermoelectric nanogenerator , 2017 .

[215]  Bong Hoon Kim,et al.  Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. , 2011, Nano letters.

[216]  Alessandro Chiolerio,et al.  Wearable Electronics and Smart Textiles: A Critical Review , 2014, Sensors.

[217]  Robert J. Wood,et al.  An integrated design and fabrication strategy for entirely soft, autonomous robots , 2016, Nature.

[218]  Yonggang Huang,et al.  Ultrathin Silicon Circuits With Strain‐Isolation Layers and Mesh Layouts for High‐Performance Electronics on Fabric, Vinyl, Leather, and Paper , 2009 .

[219]  K. Hata,et al.  A stretchable carbon nanotube strain sensor for human-motion detection. , 2011, Nature nanotechnology.

[220]  John A. Rogers,et al.  Mechanics of hemispherical electronics , 2009 .

[221]  John A. Rogers,et al.  Mechanics of stretchable inorganic electronic materials , 2009 .

[222]  Tingting Yang,et al.  Flexible graphene woven fabrics for touch sensing , 2013 .

[223]  Sigurd Wagner,et al.  Stretchable wavy metal interconnects , 2004 .

[224]  Yonggang Huang,et al.  A strain-isolation design for stretchable electronics , 2010 .

[225]  E. Salazar-López,et al.  The mental and subjective skin: Emotion, empathy, feelings and thermography , 2015, Consciousness and Cognition.

[226]  G. Spinks,et al.  Free-standing nanocomposites with high conductivity and extensibility , 2013, Nanotechnology.

[227]  T. Fabritius,et al.  All Silk-Screen Printed Polymer-Based Remotely Readable Temperature Sensor , 2015, IEEE Sensors Journal.

[228]  L. Ukkonen,et al.  Screen-Printing Fabrication and Characterization of Stretchable Electronics , 2016, Scientific Reports.

[229]  Seiji Akita,et al.  Highly selective flexible tactile strain and temperature sensors against substrate bending for an artificial skin , 2015 .

[230]  Y. Rim,et al.  Recent Progress in Materials and Devices toward Printable and Flexible Sensors , 2016, Advanced materials.

[231]  Wei-Jung Hsieh,et al.  Fabrication of micro sensors on a flexible substrate , 2008 .

[232]  M. Arnold,et al.  Highly stretchable carbon nanotube transistors enabled by buckled ion gel gate dielectrics , 2015 .

[233]  Goangseup Zi,et al.  Stretchable Active Matrix Temperature Sensor Array of Polyaniline Nanofibers for Electronic Skin , 2016, Advanced materials.

[234]  Zhenqiang Ma,et al.  Highly stretchable carbon nanotube transistors with ion gel gate dielectrics. , 2014, Nano letters.

[235]  Xue Feng,et al.  Breathable and Stretchable Temperature Sensors Inspired by Skin , 2015, Scientific Reports.

[236]  N. Lee,et al.  A Sensor Array Using Multi-functional Field-effect Transistors with Ultrahigh Sensitivity and Precision for Bio-monitoring , 2015, Scientific Reports.

[237]  G. Troster,et al.  Integration Method for Electronics in Woven Textiles , 2012, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[238]  A. Javey,et al.  Printed Carbon Nanotube Electronics and Sensor Systems , 2016, Advanced materials.

[239]  Yuelin Wang,et al.  A cost-effective flexible MEMS technique for temperature sensing , 2007, Microelectronics Journal.

[240]  Muhammad M. Hussain,et al.  CMOS‐Technology‐Enabled Flexible and Stretchable Electronics for Internet of Everything Applications , 2016, Advanced materials.

[241]  S. K. Srivastava,et al.  One-dimensional nano layered SiC/TiO2 based photonic band gap materials as temperature sensor , 2015 .

[242]  Wilhelm Albrecht,et al.  Nonwoven Fabrics: Raw Materials, Manufacture, Applications, Characteristics, Testing Processes , 2005 .

[243]  P. Veltink,et al.  The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications , 1997 .

[244]  Jonghwa Park,et al.  Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli , 2015, Science Advances.

[245]  Genevieve Dion,et al.  Carbon coated textiles for flexible energy storage , 2011 .

[246]  K. Y. Zhang,et al.  Phosphorescent Polymeric Thermometers for In Vitro and In Vivo Temperature Sensing with Minimized Background Interference , 2016 .

[247]  Yonggang Huang,et al.  Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations , 2008, Proceedings of the National Academy of Sciences.

[248]  Xiaoming Tao,et al.  Flexible pressure sensors for smart protective clothing against impact loading , 2013 .

[249]  J. M. Nassar,et al.  Decal Electronics: Printable Packaged with 3D Printing High‐Performance Flexible CMOS Electronic Systems , 2017 .

[250]  Klas Hjort,et al.  Stretchable Electronic Devices: PDMS-Based Elastomer Tuned Soft, Stretchable, and Sticky for Epidermal Electronics (Adv. Mater. 28/2016) , 2016 .

[251]  Xuewen Wang,et al.  Silk‐Molded Flexible, Ultrasensitive, and Highly Stable Electronic Skin for Monitoring Human Physiological Signals , 2014, Advanced materials.

[252]  Muhammad M. Hussain,et al.  Can We Build a Truly High Performance Computer Which is Flexible and Transparent? , 2013, Scientific Reports.

[253]  Weidong Zhou,et al.  Fast flexible electronics with strained silicon nanomembranes , 2013, Scientific Reports.

[254]  John A. Rogers,et al.  Stretchability of encapsulated electronics , 2011 .

[255]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[256]  Jing Liu,et al.  Printable tiny thermocouple by liquid metal gallium and its matching metal , 2012 .

[257]  Zhong-Shan Deng,et al.  Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies. , 2002, Journal of biomechanical engineering.

[258]  Richard Kennon,et al.  Preliminary Investigations intothe Development of Textile Based Temperature Sensor for Healthcare Applications , 2013 .