Non-linear Finite Element Analysis for Practical Application

Despite the availability of sophisticated non-linear finite element (FE) analysis software, linearelastic analysis is still the standard tool to model the response of reinforced concrete structures in practice. To allow for more frequent applications of non-linear FE analysis in practice, computationally fast, simple and reliable methods are needed. For non-linear FE analysis this article gives an overview and evaluation of ideals, approaches and methods, which are especially suited to application in practice. This includes simplified element formulations, non-linear constitutive formulations on the sectional and element level, and ways to treat numerous load combinations with non-linear FE analysis.

[1]  S. Teng EFFECTIVE TORSIONAL RIGIDITY OF REINFORCED CONCRETE MEMBERS , 2004 .

[2]  Michael P. Collins,et al.  ANALYSIS OF SECTIONS SUBJECTED TO COMBINED SHEAR AND TORSION--A THEORETICAL MODEL , 1995 .

[3]  Mario Plos,et al.  Nonlinear FE Analyses of RC Bridge Frame Corners, Based on Fracture Mechanics , 1998 .

[4]  D. G. Elms,et al.  Non-linear analysis of reinforced concrete slabs , 1972 .

[5]  Michael A. Reitman,et al.  A New Simplified Model for Nonlinear RC Slabs Analysis , 1997 .

[6]  D. G. Morrison Nonlinear Response of Reinforced Concrete Slabs Represented by Beam Grids , 1983 .

[7]  D. Hordijk Local approach to fatigue of concrete , 1991 .

[8]  Comite Euro-International du Beton,et al.  CEB design manual on cracking and deformations , 1985 .

[9]  Mario Plos Improved Bridge Assessment using Non-linear Finite Element Analyses , 2002 .

[10]  Jan C. Jofriet,et al.  Finite Element Analysis of Reinforced Concrete Slabs , 1971 .

[11]  Samir A. Ashour,et al.  Effect of compressive strength and tensile reinforcement ratio on flexural behavior of high-strength concrete beams , 2000 .

[12]  Tharmalingham Tharmabala,et al.  NONLINEAR ANALYSIS OF GRID SYSTEMS , 1989 .

[13]  Maria Anna Polak Effective Stiffness Model for Reinforced Concrete Slabs , 1996 .

[14]  Karin Lundgren,et al.  Shear and torsion interaction in prestressed hollow core units , 2005 .

[16]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[17]  Günter Fritz Glanzer Nichtlineare FE - Analyse von Stahlbetonplatten und -schalen mittels linearisierter Fliessbedingungen im Knotenkraftraum , 2000 .

[18]  Dan E. Branson,et al.  Instantaneous and Time-Dependent Deflections of Simple and Continuous Reinforced Concrete Beams , 1963 .

[19]  J. M. Bairan Garcia,et al.  Shear-Bending-Torsion Interaction in Structural Concrete Members: A Nonlinear Coupled Sectional Approach , 2007 .

[20]  Michael P. Collins,et al.  Combined Torsion and Bending in Reinforced and Prestressed Concrete Beams , 2003 .

[21]  Markus Rost,et al.  Schlanke Hochbaudecken. Steifigkeitsorientierte Analyse zur Klärung extremer Durchbiegungen , 2008 .

[22]  Comite Euro-International du Beton,et al.  CEB-FIP Model Code 1990 , 1993 .