Measuring photometric redshifts using galaxy images and Deep Neural Networks
暂无分享,去创建一个
[1] Sander Dieleman,et al. Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.
[2] Geoffrey E. Hinton,et al. ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.
[3] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[4] Robert Lupton,et al. A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements , 1999, astro-ph/9903081.
[5] R. Nichol,et al. Photometric redshift analysis in the Dark Energy Survey Science Verification data , 2014, 1406.4407.
[6] W. M. Wood-Vasey,et al. SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.
[7] Jiangang Hao,et al. ArborZ: PHOTOMETRIC REDSHIFTS USING BOOSTED DECISION TREES , 2009, The Astrophysical Journal.
[8] Walter A. Siegmund,et al. The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.
[9] Nitish Srivastava,et al. Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.
[10] D. A. García-Hernández,et al. THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.
[11] Eibe Frank,et al. Accurate photometric redshift probability density estimation – method comparison and application , 2015, 1503.08215.
[12] Roberto Tagliaferri,et al. Neural Networks for Photometric Redshifts Evaluation , 2003, WIRN.
[13] C. Donalek,et al. Neural networks and photometric redshifts , 2002 .
[14] J. Friedman. Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .
[15] Yoav Freund,et al. A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.
[16] Kerstin Paech,et al. Anomaly detection for machine learning redshifts applied to SDSS galaxies , 2015, 1503.08214.
[17] Yoshua Bengio,et al. Convolutional networks for images, speech, and time series , 1998 .
[18] Kazuhiro Shimasaku,et al. The ugriz Standard-Star System , 2002 .
[19] Joseph E. Gonzalez,et al. GraphLab: A New Parallel Framework for Machine Learning , 2010 .
[20] D. Gerdes,et al. PHAT: PHoto-z Accuracy Testing , 2010, 1008.0658.
[21] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[22] J. Weller,et al. Data augmentation for machine learning redshifts applied to Sloan Digital Sky Survey galaxies , 2015, 1501.06759.
[23] Roman Zitlau,et al. Feature importance for machine learning redshifts applied to SDSS galaxies , 2014, 1410.4696.
[24] Robert Tibshirani,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.
[25] M. Brescia,et al. A catalogue of photometric redshifts for the SDSS-DR9 galaxies , 2014, 1407.2527.
[26] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[27] R. J. Brunner,et al. TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.
[28] Ofer Lahav. Artificial Neural Networks as a Tool for Galaxy Classification , 1996 .
[29] C. Bonnett. Using neural networks to estimate redshift distributions. An application to CFHTLenS , 2013, 1312.1287.
[30] C. Lintott,et al. Galaxy Zoo 2: detailed morphological classifications for 304,122 galaxies from the Sloan Digital Sky Survey , 2013, 1308.3496.
[31] D. York,et al. The u'g'r'i'z' Standard Star Network , 2002, astro-ph/0201143.
[32] Harris Drucker,et al. Improving Regressors using Boosting Techniques , 1997, ICML.
[33] A. Fontana,et al. A Critical Assessment of Photometric Redshift Methods: A CANDELS Investigation , 2013, 1308.5353.