Distance Geometry in Active Structures

Distance constraints are an emerging formulation that offers intuitive geometrical interpretation of otherwise complex problems. The formulation can be applied in problems such as position and singularity analysis and path planning of mechanisms and structures. This paper reviews the recent advances in distance geometry, providing a unified view of these apparently disparate problems. This survey reviews algebraic and numerical techniques, and is, to the best of our knowledge, the first attempt to summarize the different approaches relating to distance-based formulations.

[1]  Federico Thomas,et al.  Sensor Localization from Distance and Orientation Constraints , 2016, Sensors.

[2]  Martin Corless,et al.  Tensegrity Flight Simulator , 2000 .

[3]  Federico Thomas,et al.  Solving geometric constraints by iterative projections and backprojections , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[4]  Dimiter Zlatanov,et al.  A General Method for the Numerical Computation of Manipulator Singularity Sets , 2014, IEEE Transactions on Robotics.

[5]  Jean-Pierre Merlet,et al.  Parallel Robots , 2000 .

[6]  Federico Thomas,et al.  An approach to the movers' problem that combines oriented matroid theory and algebraic geometry , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[7]  Ali H. Nayfeh,et al.  Payload Pendulation Reduction Using a Variable-Geometry-Truss Architecture with LQR and Fuzzy Controls , 2003 .

[8]  S. LaValle,et al.  Motion Planning , 2008, Springer Handbook of Robotics.

[9]  Harold A. Scheraga,et al.  Exact analytical loop closure in proteins using polynomial equations , 1999, J. Comput. Chem..

[11]  F. Thomas Computing Cusps of 3R Robots Using Distance Geometry , 2014 .

[12]  Josep M. Porta,et al.  Finding all valid hand configurations for a given precision grasp , 2008, 2008 IEEE International Conference on Robotics and Automation.

[13]  Federico Thomas,et al.  On the Trilaterable Six-Degree-of-Freedom Parallel and Serial Manipulators , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[14]  Javier García de Jalón,et al.  Kinematic and Dynamic Simulation of Multibody Systems , 1994 .

[15]  Simon D. Guest,et al.  Deployable structures: concepts and analysis , 1994 .

[16]  Karl Wohlhart,et al.  Position analyses of open normal assur groups A (3.6) , 2009, 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots.

[17]  Carme Torras,et al.  Singularity-invariant leg rearrangements in doubly-planar Stewart-Gough platforms , 2010, Robotics: Science and Systems.

[18]  R. S. Stoughton,et al.  A variable geometry truss manipulator for positioning large payloads , 1995 .

[19]  Federico Thomas,et al.  The closure condition of the double banana and its application to robot position analysis , 2013, 2013 IEEE International Conference on Robotics and Automation.

[20]  Yuxin Su,et al.  Mechatronics design of stiffness enhancement of the feed supporting system for the square-kilometer array , 2003 .

[21]  Josep M. Porta,et al.  Grasp Optimization Under Specific Contact Constraints , 2013, IEEE Transactions on Robotics.

[22]  Gregory S. Chirikjian,et al.  A hyper-redundant manipulator , 1994, IEEE Robotics Autom. Mag..

[23]  M. Raghavan The Stewart platform of general geometry has 40 configurations , 1993 .

[24]  Garth H Ballantyne,et al.  The da Vinci telerobotic surgical system: the virtual operative field and telepresence surgery. , 2003, The Surgical clinics of North America.

[25]  Anatoliy D. Rikun,et al.  A Convex Envelope Formula for Multilinear Functions , 1997, J. Glob. Optim..

[26]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[27]  Josep M. Porta,et al.  Planning Singularity-Free Paths on Closed-Chain Manipulators , 2013, IEEE Transactions on Robotics.

[28]  Jeffrey C. Trinkle,et al.  Motion planning for planar n-bar mechanisms with revolute joints , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[29]  Dinesh Manocha,et al.  Efficient inverse kinematics for general 6R manipulators , 1994, IEEE Trans. Robotics Autom..

[30]  Enric Celaya,et al.  A Relational Positioning Methodology for Robot Task Specification and Execution , 2008, IEEE Transactions on Robotics.

[31]  Hiroshi Furuya,et al.  Variable geometry truss and its application to deployable truss and space crane arm , 1985 .

[32]  Federico Thomas,et al.  INVERSE KINEMATICS BY DISTANCE MATRIX COMPLETION , 2005 .

[33]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[34]  Federico Thomas,et al.  Distance Bound Smoothing under orientation constraints , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[35]  Christoph M. Hoffmann,et al.  Geometric Constraint Solving in Parametric Computer-Aided Design , 2011, J. Comput. Inf. Sci. Eng..

[36]  Koryo Miura,et al.  Variable Geometry Truss Concept , 1984 .

[37]  Júlia Borràs Sol,et al.  The octahedral manipulator revisited , 2012, 2012 IEEE International Conference on Robotics and Automation.

[38]  Leo Liberti,et al.  The discretizable molecular distance geometry problem , 2006, Computational Optimization and Applications.

[39]  Federico Thomas,et al.  The Univariate Closure Conditions of All Fully Parallel Planar Robots Derived From a Single Polynomial , 2013, IEEE Transactions on Robotics.

[40]  F. Thomas,et al.  Application of Distance Geometry to Tracing Coupler Curves of Pin-Jointed Linkages , 2013 .

[41]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[42]  Josep M. Porta,et al.  Synthesizing grasp configurations with specified contact regions , 2011, Int. J. Robotics Res..

[43]  Nicolas Rojas,et al.  Distance-based formulations for the position analysis of kinematic chains , 2012 .

[44]  Thierry Siméon,et al.  Manipulation Planning with Probabilistic Roadmaps , 2004, Int. J. Robotics Res..

[45]  P. C. Hughes,et al.  Trussarm—A Variable-Geometry-Truss Manipulator , 1991 .

[46]  Carme Torras,et al.  Solving Multi-Loop Linkages by Iterating 2D Clippings , 2002 .

[47]  Carme Torras,et al.  Singularity-Invariant Leg Rearrangements in Stewart–Gough Platforms , 2010 .

[48]  Josep M. Porta,et al.  CuikSLAM: A Kinematics-based Approach to SLAM , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[49]  I. Kuntz,et al.  Distance geometry. , 1989, Methods in enzymology.

[50]  Li Han,et al.  Stratified Deformation Space and Path Planning for a Planar Closed Chain with Revolute Joints , 2006, WAFR.

[51]  Carme Torras,et al.  A branch-and-prune solver for distance constraints , 2005, IEEE Transactions on Robotics.

[52]  Steven M. LaValle,et al.  Motion Planning Part I: The Essentials , 2011 .

[53]  Fengfeng Xi,et al.  Type synthesis and kinematics of a modular variable geometry truss mechanism for aircraft wing morphing , 2009, 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots.

[54]  Yung Ting,et al.  Modeling and control for a Gough-Stewart platform CNC machine , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[55]  J. M. Porta,et al.  Closed-form position analysis of variable geometry trusses , 2017 .

[56]  Juan Jesús Pérez,et al.  Complete maps of molecular‐loop conformational spaces , 2008, J. Comput. Chem..

[57]  Simon Parsons,et al.  Principles of Robot Motion: Theory, Algorithms and Implementations by Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, 603 pp., $60.00, ISBN 0-262-033275 , 2007, The Knowledge Engineering Review.

[58]  Gordon M. Crippen,et al.  Distance Geometry and Molecular Conformation , 1988 .

[59]  Carlile Lavor,et al.  On a Relationship Between Graph Realizability and Distance Matrix Completion , 2013 .

[60]  Michihiro Natori,et al.  Development of Adaptive Roof Structure by Variable Geometry Truss , 2001 .

[61]  Carme Torras,et al.  A branch-and-prune algorithm for solving systems of distance constraints , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[62]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .